hv1_hypercall/
support.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Support for parsing and handling hypercalls.

use guestmem::GuestMemory;
use guestmem::GuestMemoryError;
use hvdef::HV_PAGE_SIZE;
use hvdef::HV_PAGE_SIZE_USIZE;
use hvdef::HvError;
use hvdef::HvResult;
use hvdef::HypercallCode;
use hvdef::hypercall::Control;
use hvdef::hypercall::HypercallOutput;
use std::marker::PhantomData;
use thiserror::Error;
use zerocopy::FromBytes;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;
use zerocopy::Ref;

/// A hypercall definition.
#[derive(Copy, Clone)]
pub enum HypercallData {
    /// A non-rep hypercall.
    Simple {
        /// The fixed input size.
        input_size: usize,
        /// The fixed output size.
        output_size: usize,
        /// If true, the input is variable sized.
        is_variable: bool,
    },
    /// A rep hypercall.
    Rep {
        /// The fixed input size.
        header_size: usize,
        /// The input element size.
        input_element_size: usize,
        /// The output element size.
        output_element_size: usize,
        /// If true, the input is variable sized.
        is_variable: bool,
    },
    /// A VTL switch hypercall.
    Vtl,
}

/// Parameters to pass to a hypercall dispatch function.
pub struct HypercallParameters<'a> {
    control: Control,
    input: &'a [u8],
    output: &'a mut [u8],
}

/// `[u64; 2]` buffer aligned to 16 bytes for hypercall inputs.
#[repr(C, align(16))]
#[derive(Copy, Clone)]
struct HypercallAlignedBuf128<const N: usize>([[u64; 2]; N]);

impl<const N: usize> HypercallAlignedBuf128<N> {
    fn new_zeroed() -> Self {
        Self([[0, 0]; N])
    }
}

type HypercallAlignedPage = HypercallAlignedBuf128<{ HV_PAGE_SIZE_USIZE / 16 }>;

/// A helper for dispatching hypercalls.
struct InnerDispatcher<'a, T> {
    control: Control,
    guest_memory: &'a GuestMemory,
    handler: T,
}

#[derive(Debug, Error)]
enum HypercallParseError {
    #[error("invalid control: {0:?}")]
    InvalidControl(Control),
    #[error("hypercall input too large for fast hypercall")]
    TooBigForFast,
    #[error("input/output straddles a page boundary")]
    Straddle,
    #[error("memory access error")]
    Access(#[source] GuestMemoryError),
    #[error("unaligned memory access")]
    Unaligned,
}

impl From<HypercallParseError> for HvError {
    fn from(err: HypercallParseError) -> Self {
        tracing::warn!(
            error = &err as &dyn std::error::Error,
            "hypercall parse failure"
        );
        match err {
            HypercallParseError::Unaligned => Self::InvalidAlignment,
            _ => Self::InvalidHypercallInput,
        }
    }
}

/// Trait for getting the handler from the `handler` parameter passed to
/// [`Dispatcher::dispatch`].
///
/// This is useful when the handler parameter is a wrapper that applies a
/// specific hypercall calling convention.
pub trait AsHandler<H> {
    /// Gets the inner handler.
    fn as_handler(&mut self) -> &mut H;
}

impl<'a, T: HypercallIo> InnerDispatcher<'a, T> {
    /// Creates a new dispatcher.
    fn new(guest_memory: &'a GuestMemory, mut handler: T) -> Self {
        Self {
            control: handler.control().into(),
            guest_memory,
            handler,
        }
    }

    /// Gets the hypercall code being dispatched.
    fn code(&self) -> HypercallCode {
        HypercallCode(self.control.code())
    }

    /// Logs an unsupported hypercall and returns the appropriate error.
    fn unhandled(&self) -> Option<HypercallOutput> {
        tracelimit::warn_ratelimited!(code = ?self.code(), "no handler for hypercall code");
        Some(HvError::InvalidHypercallCode.into())
    }

    /// Complete hypercall handling.
    fn complete(&mut self, output: Option<HypercallOutput>) {
        if let Some(output) = output {
            if output.call_status() == Err(HvError::Timeout).into() {
                self.handler.retry(
                    self.control
                        .with_rep_start(output.elements_processed())
                        .into(),
                );
            } else {
                self.handler.set_result(output.into());
                self.handler.advance_ip();
            }
        }
    }

    fn dispatch_dyn<H>(
        &mut self,
        data: &HypercallData,
        dispatch: fn(&mut H, HypercallParameters<'_>) -> HypercallOutput,
    ) -> Option<HypercallOutput>
    where
        T: AsHandler<H>,
    {
        self.dispatch_inner(data, dispatch)
            .unwrap_or_else(|err| Some(err.into()))
    }

    fn dispatch_inner<H>(
        &mut self,
        data: &HypercallData,
        dispatch: fn(&mut H, HypercallParameters<'_>) -> HypercallOutput,
    ) -> Result<Option<HypercallOutput>, HvError>
    where
        T: AsHandler<H>,
    {
        tracing::trace!(code = ?self.code(), "hypercall");
        let control = self.control;

        let (input_len, output_start, output_len, out_elem_size) = match *data {
            HypercallData::Vtl => {
                let input = self.handler.vtl_input();
                let _ = (dispatch)(
                    self.handler.as_handler(),
                    HypercallParameters {
                        control,
                        input: input.as_bytes(),
                        output: &mut [],
                    },
                );
                return Ok(None);
            }
            HypercallData::Simple {
                input_size,
                output_size,
                is_variable,
            } => {
                if control.rep_count() != 0
                    || control.rep_start() != 0
                    || (!is_variable && control.variable_header_size() != 0)
                {
                    return Err(HypercallParseError::InvalidControl(control).into());
                }

                let input_size = input_size + control.variable_header_size() * 8;
                (input_size, 0, output_size, 0)
            }
            HypercallData::Rep {
                header_size,
                input_element_size,
                output_element_size,
                is_variable,
            } => {
                if control.rep_count() == 0
                    || (!is_variable && control.variable_header_size() != 0)
                    || control.rep_start() >= control.rep_count()
                {
                    return Err(HypercallParseError::InvalidControl(control).into());
                }

                let input_len = header_size
                    + control.variable_header_size() * 8
                    + input_element_size * control.rep_count();
                let output_start = output_element_size * control.rep_start();
                let output_len = output_element_size * control.rep_count();
                (input_len, output_start, output_len, output_element_size)
            }
        };

        let mut input_buffer = HypercallAlignedPage::new_zeroed();
        let mut output_buffer = HypercallAlignedPage::new_zeroed();

        let ret = if control.fast() {
            let input_regpairs = (input_len + 15) / 16;
            let output_regpairs = (output_len + 15) / 16;
            if self.handler.fast_register_pair_count() < input_regpairs
                || self.handler.fast_register_pair_count() - input_regpairs < output_regpairs
                || (output_regpairs > 0 && !self.handler.extended_fast_hypercalls_ok())
            {
                return Err(HypercallParseError::TooBigForFast.into());
            }

            let input = &mut input_buffer.0[..input_regpairs];
            let output = &mut output_buffer.0[..output_regpairs];

            // Read in the input.
            let output_start_index = self.handler.fast_input(input, output_regpairs);
            let completed_output_pairs = output_start / 16;
            let (new_output_index, completed_output_pairs) = match output_start % 16 {
                0 => (
                    output_start_index + completed_output_pairs,
                    completed_output_pairs,
                ),
                _ => {
                    // There are some number of completed output pairs, and one partial pair.
                    // Copy the partial register pair from the previous output to the appropriate
                    // location in the output buffer.
                    let partial_output_index = output_start_index + completed_output_pairs;
                    self.handler.fast_regs(
                        partial_output_index,
                        &mut output[completed_output_pairs..completed_output_pairs + 1],
                    );
                    (partial_output_index, completed_output_pairs)
                }
            };

            let ret = (dispatch)(
                self.handler.as_handler(),
                HypercallParameters {
                    control,
                    input: &input.as_bytes()[..input_len],
                    output: &mut output.as_mut_bytes()[..output_len],
                },
            );

            // For rep hypercalls, always write back the completed number of reps (which may be 0).
            // For simple hypercalls, on success write back all output. On failure (and timeout,
            // which is handled as a failure), nothing is written back.
            let output_end = if out_elem_size > 0 {
                out_elem_size * ret.elements_processed()
            } else if ret.call_status().is_ok() {
                output_len
            } else {
                0
            };

            let output_regpairs = (output_end + 15) / 16;

            // Only need to write back output regpairs that were not previously completely written
            // out, at the new output location.
            let output = &output[completed_output_pairs..output_regpairs];
            self.handler.fast_output(new_output_index, output);
            ret
        } else {
            let check_buffer = |gpa: u64, len: usize| {
                // All IO must fit within a single page.
                if (len as u64) > (HV_PAGE_SIZE - gpa % HV_PAGE_SIZE) {
                    return Err(HvError::from(HypercallParseError::Straddle));
                }

                // The buffer must be 8 byte aligned.
                if len != 0 && gpa % 8 != 0 {
                    return Err(HvError::from(HypercallParseError::Unaligned));
                }

                Ok(())
            };

            check_buffer(self.handler.input_gpa(), input_len)?;
            check_buffer(self.handler.output_gpa(), output_len)?;

            let input = &mut input_buffer.0.as_mut_bytes()[..input_len];
            let output = &mut output_buffer.0.as_mut_bytes()[..output_len];

            // FUTURE: consider copying only the header and entries after
            // `rep_start` for rep hypercalls.
            self.guest_memory
                .read_at(self.handler.input_gpa(), input)
                .map_err(HypercallParseError::Access)?;

            let output_gpa = self.handler.output_gpa();

            let ret = (dispatch)(
                self.handler.as_handler(),
                HypercallParameters {
                    control,
                    input,
                    output,
                },
            );

            // For rep hypercalls, always write back the completed number of reps (which may be 0).
            // For simple hypercalls, on success write back all output. On failure (and timeout,
            // which is handled as a failure), nothing is written back.
            let output_end = if out_elem_size > 0 {
                out_elem_size * ret.elements_processed()
            } else if ret.call_status().is_ok() {
                output_len
            } else {
                0
            };

            self.guest_memory
                .write_at(
                    output_gpa.wrapping_add(output_start as u64),
                    &output[output_start..output_end],
                )
                .map_err(HypercallParseError::Access)?;

            ret
        };

        if ret.call_status().is_ok() {
            debug_assert_eq!(ret.elements_processed(), control.rep_count());
        }

        Ok(Some(ret))
    }
}

/// Provides input and output parameters for a hypercall.
pub trait HypercallIo {
    /// Advances the instruction pointer for a completed hypercall.
    ///
    /// Either `advance_ip` or `retry` will be called.
    fn advance_ip(&mut self);

    /// Retains the instruction pointer at the hypercall point so that the
    /// hypercall will be retried.
    ///
    /// Either `advance_ip` or `retry` will be called.
    /// `control` is the updated hypercall input value to use in the retry.
    fn retry(&mut self, control: u64);

    /// The hypercall input value.
    fn control(&mut self) -> u64;

    /// The guest address of the hypercall input.
    fn input_gpa(&mut self) -> u64;

    /// The guest address of the hypercall output.
    fn output_gpa(&mut self) -> u64;

    /// Returns the maximum number of fast register pairs.
    fn fast_register_pair_count(&mut self) -> usize;

    /// Returns whether extended fast hypercall input/output is allowed.
    fn extended_fast_hypercalls_ok(&mut self) -> bool;

    /// Fills the buffer with fast input parameters. Given an output size in
    /// register pairs, returns the index of the first output register pair.
    fn fast_input(&mut self, buf: &mut [[u64; 2]], output_register_pairs: usize) -> usize;

    /// Writes fast output registers from the buffer.
    fn fast_output(&mut self, starting_pair_index: usize, buf: &[[u64; 2]]);

    /// The VTL switch hypercall input parameter.
    fn vtl_input(&mut self) -> u64;

    /// Sets the hypercall result.
    fn set_result(&mut self, n: u64);

    /// Reads fast input/output registers into a buffer, given the starting pair index.
    fn fast_regs(&mut self, starting_pair_index: usize, buf: &mut [[u64; 2]]);
}

impl<T: HypercallIo> HypercallIo for &mut T {
    fn advance_ip(&mut self) {
        (**self).advance_ip()
    }

    fn retry(&mut self, control: u64) {
        (**self).retry(control)
    }

    fn control(&mut self) -> u64 {
        (**self).control()
    }

    fn input_gpa(&mut self) -> u64 {
        (**self).input_gpa()
    }

    fn output_gpa(&mut self) -> u64 {
        (**self).output_gpa()
    }

    fn fast_register_pair_count(&mut self) -> usize {
        (**self).fast_register_pair_count()
    }

    fn extended_fast_hypercalls_ok(&mut self) -> bool {
        (**self).extended_fast_hypercalls_ok()
    }

    fn fast_input(&mut self, buf: &mut [[u64; 2]], output_register_pairs: usize) -> usize {
        (**self).fast_input(buf, output_register_pairs)
    }

    fn fast_output(&mut self, starting_pair_index: usize, buf: &[[u64; 2]]) {
        (**self).fast_output(starting_pair_index, buf)
    }

    fn vtl_input(&mut self) -> u64 {
        (**self).vtl_input()
    }

    fn set_result(&mut self, n: u64) {
        (**self).set_result(n)
    }

    fn fast_regs(&mut self, starting_pair_index: usize, buf: &mut [[u64; 2]]) {
        (**self).fast_regs(starting_pair_index, buf)
    }
}

/// A trait defined on dummy objects to provide metadata for a hypercall.
pub trait HypercallDefinition {
    /// The hypercall code.
    const CODE: HypercallCode;
    /// The associated hypercall metadata.
    const DATA: HypercallData;
}

/// A trait to dispatch an individual hypercall.
pub trait HypercallDispatch<T> {
    /// Dispatch this hypercall.
    fn dispatch(&mut self, params: HypercallParameters<'_>) -> HypercallOutput;
}

/// A simple, non-variable hypercall.
pub struct SimpleHypercall<In, Out, const CODE: u16>(PhantomData<(In, Out)>);

impl<In, Out, const CODE: u16> SimpleHypercall<In, Out, CODE>
where
    In: IntoBytes + FromBytes + Immutable + KnownLayout,
    Out: IntoBytes + FromBytes + Immutable + KnownLayout,
{
    /// Parses the hypercall parameters to input and output types.
    pub fn parse(params: HypercallParameters<'_>) -> (&In, &mut Out) {
        (
            FromBytes::ref_from_prefix(params.input).unwrap().0, // TODO: zerocopy: ref-from-prefix: use-rest-of-range, err (https://github.com/microsoft/openvmm/issues/759)
            FromBytes::mut_from_prefix(params.output).unwrap().0, // TODO: zerocopy: mut-from-prefix: use-rest-of-range, err (https://github.com/microsoft/openvmm/issues/759)
        )
    }

    pub fn run(
        params: HypercallParameters<'_>,
        f: impl FnOnce(&In) -> HvResult<Out>,
    ) -> HypercallOutput {
        let (input, output) = Self::parse(params);
        match f(input) {
            Ok(r) => {
                *output = r;
                HypercallOutput::SUCCESS
            }
            Err(e) => HypercallOutput::from(e),
        }
    }
}

impl<In, Out, const CODE: u16> HypercallDefinition for SimpleHypercall<In, Out, CODE> {
    const CODE: HypercallCode = HypercallCode(CODE);

    const DATA: HypercallData = HypercallData::Simple {
        input_size: size_of::<In>(),
        output_size: size_of::<Out>(),
        is_variable: false,
    };
}

/// A simple variable hypercall.
pub struct VariableHypercall<In, Out, const CODE: u16>(PhantomData<(In, Out)>);

impl<In, Out, const CODE: u16> VariableHypercall<In, Out, CODE>
where
    In: IntoBytes + FromBytes + Immutable + KnownLayout,
    Out: IntoBytes + FromBytes + Immutable + KnownLayout,
{
    /// Parses the hypercall parameters to input and output types.
    pub fn parse(params: HypercallParameters<'_>) -> (&In, &[u64], &mut Out) {
        let (input, rest) = Ref::<_, In>::from_prefix(params.input).unwrap();
        (
            Ref::into_ref(input),
            <[u64]>::ref_from_bytes(rest).unwrap(), //TODO: zerocopy: err (https://github.com/microsoft/openvmm/issues/759)
            Out::mut_from_prefix(params.output).unwrap().0, //TODO: zerocopy: err (https://github.com/microsoft/openvmm/issues/759)
        )
    }

    pub fn run(
        params: HypercallParameters<'_>,
        f: impl FnOnce(&In, &[u64]) -> HvResult<Out>,
    ) -> HypercallOutput {
        let (input, var_header, output) = Self::parse(params);
        match f(input, var_header) {
            Ok(r) => {
                *output = r;
                HypercallOutput::SUCCESS
            }
            Err(e) => HypercallOutput::from(e),
        }
    }
}

impl<In, Out, const CODE: u16> HypercallDefinition for VariableHypercall<In, Out, CODE> {
    const CODE: HypercallCode = HypercallCode(CODE);

    const DATA: HypercallData = HypercallData::Simple {
        input_size: size_of::<In>(),
        output_size: size_of::<Out>(),
        is_variable: true,
    };
}

/// A rep hypercall.
pub struct RepHypercall<Hdr, In, Out, const CODE: u16>(PhantomData<(Hdr, In, Out)>);

/// Hypervisor result type for rep hypercalls. These hypercalls have either no or only rep output
/// data, which is passed separately from the result. The error is an a tuple consisting of an
/// `HvError` and the number of elements successfully processed prior to the error being returned.
/// An `Ok` result implies that all input elements were processed successfully.
pub type HvRepResult = Result<(), (HvError, usize)>;

impl<Hdr, In, Out, const CODE: u16> RepHypercall<Hdr, In, Out, CODE>
where
    Hdr: IntoBytes + FromBytes + Immutable + KnownLayout,
    In: IntoBytes + FromBytes + Immutable + KnownLayout,
    Out: IntoBytes + FromBytes + Immutable + KnownLayout,
{
    /// Parses the hypercall parameters to input and output types.
    pub fn parse(params: HypercallParameters<'_>) -> (&Hdr, &[In], &mut [Out]) {
        let (header, rest) = Ref::<_, Hdr>::from_prefix(params.input).unwrap();
        let input = if size_of::<In>() == 0 {
            &[]
        } else {
            // TODO: zerocopy: err (https://github.com/microsoft/openvmm/issues/759)
            &<[In]>::ref_from_bytes(rest).unwrap()[params.control.rep_start()..]
        };
        let output = if size_of::<Out>() == 0 {
            &mut []
        } else {
            // TODO: zerocopy: err (https://github.com/microsoft/openvmm/issues/759)
            &mut <[Out]>::mut_from_prefix_with_elems(
                params.output,
                params.output.len() / size_of::<Out>(),
            )
            .unwrap()
            .0[params.control.rep_start()..]
        };

        (Ref::into_ref(header), input, output)
    }

    pub fn run(
        params: HypercallParameters<'_>,
        f: impl FnOnce(&Hdr, &[In], &mut [Out]) -> HvRepResult,
    ) -> HypercallOutput {
        let control = params.control;
        let (header, input, output) = Self::parse(params);
        match f(header, input, output) {
            Ok(()) => HypercallOutput::SUCCESS.with_elements_processed(control.rep_count()),
            Err((e, reps)) => {
                assert!(
                    control.rep_start() + reps < control.rep_count(),
                    "more reps processed than requested"
                );
                HypercallOutput::from(e).with_elements_processed(control.rep_start() + reps)
            }
        }
    }
}

impl<Hdr, In, Out, const CODE: u16> HypercallDefinition for RepHypercall<Hdr, In, Out, CODE> {
    const CODE: HypercallCode = HypercallCode(CODE);

    const DATA: HypercallData = HypercallData::Rep {
        header_size: size_of::<Hdr>(),
        input_element_size: size_of::<In>(),
        output_element_size: size_of::<Out>(),
        is_variable: false,
    };
}

/// A variable rep hypercall.
pub struct VariableRepHypercall<Hdr, In, Out, const CODE: u16>(PhantomData<(Hdr, In, Out)>);

impl<Hdr, In, Out, const CODE: u16> VariableRepHypercall<Hdr, In, Out, CODE>
where
    Hdr: IntoBytes + FromBytes + Immutable + KnownLayout,
    In: IntoBytes + FromBytes + Immutable + KnownLayout,
    Out: IntoBytes + FromBytes + Immutable + KnownLayout,
{
    /// Parses the hypercall parameters to input and output types.
    pub fn parse(params: HypercallParameters<'_>) -> (&Hdr, &[u64], &[In], &mut [Out]) {
        let (header, rest) = Ref::<_, Hdr>::from_prefix(params.input).unwrap();
        let (var_header, rest) =
            <[u64]>::ref_from_prefix_with_elems(rest, params.control.variable_header_size())
                .unwrap();
        let input = if size_of::<In>() == 0 {
            &[]
        } else {
            &<[In]>::ref_from_bytes(rest).unwrap()[params.control.rep_start()..]
        };
        let output = if size_of::<Out>() == 0 {
            &mut []
        } else {
            // TODO: zerocopy: err (https://github.com/microsoft/openvmm/issues/759)
            &mut <[Out]>::mut_from_prefix_with_elems(
                params.output,
                params.output.len() / size_of::<Out>(),
            )
            .unwrap()
            .0[params.control.rep_start()..]
        };
        (Ref::into_ref(header), var_header, input, output)
    }

    pub fn run(
        params: HypercallParameters<'_>,
        f: impl FnOnce(&Hdr, &[u64], &[In], &mut [Out]) -> HvRepResult,
    ) -> HypercallOutput {
        let control = params.control;
        let (header, var_header, input, output) = Self::parse(params);
        match f(header, var_header, input, output) {
            Ok(()) => HypercallOutput::SUCCESS.with_elements_processed(control.rep_count()),
            Err((e, reps)) => {
                assert!(
                    control.rep_start() + reps < control.rep_count(),
                    "more reps processed than requested"
                );
                HypercallOutput::from(e).with_elements_processed(control.rep_start() + reps)
            }
        }
    }
}

impl<Hdr, In, Out, const CODE: u16> HypercallDefinition
    for VariableRepHypercall<Hdr, In, Out, CODE>
{
    const CODE: HypercallCode = HypercallCode(CODE);

    const DATA: HypercallData = HypercallData::Rep {
        header_size: size_of::<Hdr>(),
        input_element_size: size_of::<In>(),
        output_element_size: size_of::<Out>(),
        is_variable: true,
    };
}

/// A VTL switch hypercall.
pub struct VtlHypercall<const CODE: u16>(());

impl<const CODE: u16> VtlHypercall<CODE> {
    pub fn parse(params: HypercallParameters<'_>) -> (u64, Control) {
        (u64::read_from_bytes(params.input).unwrap(), params.control)
    }

    pub fn run(params: HypercallParameters<'_>, f: impl FnOnce(u64, Control)) -> HypercallOutput {
        let (input, control) = Self::parse(params);
        f(input, control);
        HypercallOutput::SUCCESS
    }
}

impl<const CODE: u16> HypercallDefinition for VtlHypercall<CODE> {
    const CODE: HypercallCode = HypercallCode(CODE);
    const DATA: HypercallData = HypercallData::Vtl;
}

/// Creates a hypercall dispatcher, where the dispatcher can support any of the
/// list of provided hypercalls.
///
/// ```ignore
/// hv1_hypercall::dispatcher!(
///     Self,
///     &guest_memory,
///     [
///         hv1_hypercall::HvPostMessage,
///         hv1_hypercall::HvSignalEvent,
///         #[cfg(guest_arch = "x86_64")]
///         hv1_hypercall::HvX64StartVirtualProcessor,
///     ],
/// );
/// ```
#[macro_export]
macro_rules! dispatcher {
    ($handler:ty, [ $($(#[$a:meta])* $hc:ty),* $(,)? ] $(,)?) => {
        {
            use $crate::{Dispatcher, HypercallDefinition, HypercallHandler};

            Dispatcher::<$handler>::new(|hc| match hc {
                $(
                $(#[$a])*
                <$hc as HypercallDefinition>::CODE => Some(HypercallHandler::new::<$hc>()),
                )*
                _ => None,
            })
        }
    };
}

/// Hypercall dispatcher.
///
/// Construct with [`dispatcher!`].
pub struct Dispatcher<H> {
    lookup: fn(HypercallCode) -> Option<HypercallHandler<H>>,
}

#[doc(hidden)]
pub struct HypercallHandler<H> {
    data: &'static HypercallData,
    f: fn(&mut H, HypercallParameters<'_>) -> HypercallOutput,
}

impl<H> HypercallHandler<H> {
    pub fn new<C: HypercallDefinition>() -> Self
    where
        H: HypercallDispatch<C>,
    {
        Self {
            data: &C::DATA,
            f: H::dispatch,
        }
    }
}

impl<H> Dispatcher<H> {
    #[doc(hidden)]
    pub const fn new(lookup: fn(HypercallCode) -> Option<HypercallHandler<H>>) -> Self {
        Self { lookup }
    }

    /// Dispatches a hypercall.
    pub fn dispatch(&self, guest_memory: &GuestMemory, handler: impl HypercallIo + AsHandler<H>) {
        let mut dispatcher = InnerDispatcher::new(guest_memory, handler);
        let result = match (self.lookup)(dispatcher.code()) {
            Some(x) => dispatcher.dispatch_dyn(x.data, x.f),
            None => dispatcher.unhandled(),
        };
        dispatcher.complete(result);
    }
}