headervec/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! This module implements the `HeaderVec` type for constructing dynamically
//! sized values that have a fixed size header and a variable sized element
//! type. This is a common pattern in IOCTL input buffers.
// UNSAFETY: Implementing a custom data structure that requires manual memory
// management and pointer manipulation.
#![expect(unsafe_code)]
#![no_std]
extern crate alloc;
use alloc::alloc::Layout;
use alloc::alloc::alloc;
use alloc::alloc::handle_alloc_error;
use alloc::boxed::Box;
use core::cmp;
use core::mem::MaybeUninit;
use core::ops::Deref;
use core::ops::DerefMut;
use core::ptr::NonNull;
/// A type that represents a fixed-sized header followed by a variable-sized
/// tail.
#[repr(C)]
#[derive(Debug)]
pub struct HeaderSlice<T, U: ?Sized> {
/// The fixed-sized header.
pub head: T,
/// The variable-sized tail.
pub tail: U,
}
impl<T, U> HeaderSlice<T, [U]> {
fn ptr_from_raw_parts(ptr: *const T, len: usize) -> *const Self {
// Create a [T] (the inner type doesn't actually matter) with `len`
// elements, then cast it to a HeaderSlice<T, [U]>. The cast via `as`
// preserves the element count.
//
// FUTURE: use [`core::ptr::from_raw_parts`] once it is stable.
core::ptr::slice_from_raw_parts(ptr, len) as *const Self
}
fn ptr_from_raw_parts_mut(ptr: *mut T, len: usize) -> *mut Self {
// Create a [T] (the inner type doesn't actually matter) with `len`
// elements, then cast it to a HeaderSlice<T, [U]>. The cast via `as`
// preserves the element count.
//
// FUTURE: use [`core::ptr::from_raw_parts_mut`] once it is stable.
core::ptr::slice_from_raw_parts_mut(ptr, len) as *mut Self
}
/// # Safety
/// The caller must ensure that `ptr` points to a `T` followed by `len`
/// elements of `U`, valid for lifetime `'a`.
unsafe fn from_raw_parts<'a>(ptr: *const T, len: usize) -> &'a Self {
// SAFETY: the caller ensures that the resulting pointer is valid for
// lifetime `'a`.
unsafe { &*Self::ptr_from_raw_parts(ptr, len) }
}
/// # Safety
/// The caller must ensure that `ptr` points to a `T` followed by `len`
/// elements of `U`, valid for lifetime `'a`.
unsafe fn from_raw_parts_mut<'a>(ptr: *mut T, len: usize) -> &'a mut Self {
// SAFETY: the caller ensures that the resulting pointer is valid for
// lifetime `'a`.
unsafe { &mut *Self::ptr_from_raw_parts_mut(ptr, len) }
}
}
#[derive(Debug)]
enum Data<T, U, const N: usize> {
Fixed(HeaderSlice<T, [MaybeUninit<U>; N]>),
Alloc(Box<HeaderSlice<T, [MaybeUninit<U>]>>),
}
impl<T, U, const N: usize> Data<T, U, N> {
/// # Safety
///
/// The caller must ensure that the first `len` elements have been initialized.
unsafe fn valid(&self, len: usize) -> &HeaderSlice<T, [U]> {
// SAFETY: the caller has ensured that the first `len` elements have been
// initialized.
unsafe { HeaderSlice::from_raw_parts(core::ptr::from_ref(self.storage()).cast(), len) }
}
/// # Safety
///
/// The caller must ensure that the first `len` elements have been initialized.
unsafe fn valid_mut(&mut self, len: usize) -> &mut HeaderSlice<T, [U]> {
// SAFETY: the caller has ensured that the first `len` elements have been
// initialized.
unsafe {
HeaderSlice::from_raw_parts_mut(core::ptr::from_mut(self.storage_mut()).cast(), len)
}
}
fn storage(&self) -> &HeaderSlice<T, [MaybeUninit<U>]> {
let p: &HeaderSlice<T, [MaybeUninit<U>]> = match self {
Data::Fixed(p) => p,
Data::Alloc(p) => p,
};
if size_of::<U>() == 0 {
// SAFETY: the tail element is a ZST so its slice is valid for any
// length.
unsafe { HeaderSlice::from_raw_parts(&raw const p.head, usize::MAX) }
} else {
p
}
}
fn storage_mut(&mut self) -> &mut HeaderSlice<T, [MaybeUninit<U>]> {
let p: &mut HeaderSlice<T, [MaybeUninit<U>]> = match self {
Data::Fixed(p) => p,
Data::Alloc(p) => p,
};
if size_of::<U>() == 0 {
// SAFETY: the tail element is a ZST so its slice is valid for any
// length.
unsafe { HeaderSlice::from_raw_parts_mut(&raw mut p.head, usize::MAX) }
} else {
p
}
}
}
/// Implements a `Vec`-like type for building structures with a fixed-sized
/// prefix before a dynamic number of elements.
///
/// To avoid allocations in common cases, the header and elements are stored
/// internally without allocating until the element count would exceed the
/// statically determined capacity.
///
/// Only a small portion of the `Vec` interface is supported. Additional methods
/// can be added as needed.
///
/// The data managed by this type must be `Copy`. This simplifies the resource
/// management and should be sufficient for most use cases.
///
/// # Example
/// ```
/// # use headervec::HeaderVec;
/// #[derive(Copy, Clone)]
/// struct Header { x: u32 }
/// let mut v = HeaderVec::<Header, u8, 10>::new(Header{ x: 1234 });
/// v.push_tail(5);
/// v.push_tail(6);
/// assert_eq!(v.head.x, 1234);
/// assert_eq!(&v.tail, &[5, 6]);
/// ```
#[derive(Debug)]
pub struct HeaderVec<T, U, const N: usize> {
data: Data<T, U, N>,
len: usize,
}
impl<T: Copy + Default, U: Copy, const N: usize> Default for HeaderVec<T, U, N> {
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T: Copy, U: Copy, const N: usize> HeaderVec<T, U, N> {
/// Constructs a new `HeaderVec` with a header of `head` and no tail
/// elements.
pub fn new(head: T) -> Self {
Self {
data: Data::Fixed(HeaderSlice {
head,
tail: [const { MaybeUninit::uninit() }; N],
}),
len: 0,
}
}
/// Constructs a new `HeaderVec` with a header of `head` and no tail
/// elements, but with a dynamically allocated capacity for `cap` elements.
pub fn with_capacity(head: T, cap: usize) -> Self {
let mut vec = Self::new(head);
if cap > vec.tail_capacity() {
vec.realloc(cap);
}
vec
}
fn realloc(&mut self, cap: usize) {
assert!(cap > self.len);
assert!(size_of::<U>() > 0);
let base_layout = Layout::new::<HeaderSlice<T, [MaybeUninit<U>; 0]>>();
let layout = Layout::from_size_align(
base_layout
.size()
.checked_add(size_of::<U>().checked_mul(cap).unwrap())
.unwrap(),
base_layout.align(),
)
.unwrap();
// SAFETY: `layout` is correctly constructed and is non-empty.
let alloc = unsafe { alloc(layout) };
let Some(alloc) = NonNull::new(alloc) else {
handle_alloc_error(layout);
};
// Copy the head.
// SAFETY: `alloc` starts with `T`.
unsafe {
alloc.cast::<T>().write(self.data.storage_mut().head);
}
// Build the fat pointer to the DST.
let alloc =
HeaderSlice::<T, [MaybeUninit<U>]>::ptr_from_raw_parts_mut(alloc.as_ptr().cast(), cap);
// SAFETY: `head` has been initialized and `tail` is `MaybeUninit`.
// `alloc` was allocated with the same layout `Box::new` would use.
let mut alloc = unsafe { Box::from_raw(alloc) };
// Copy the initialized portion of the tail.
alloc.tail[..self.len].copy_from_slice(&self.data.storage_mut().tail[..self.len]);
self.data = Data::Alloc(alloc);
}
fn extend_tail(&mut self, n: usize) -> &mut [MaybeUninit<U>] {
let cap = self.tail_capacity();
if cap - self.len < n {
assert!(size_of::<U>() > 0, "ZST tail slice overflow");
// Double the current capacity to ensure a geometric progression
// (avoiding O(n^2) allocations).
let new_cap = cmp::max(
cmp::max(8, cap.checked_mul(2).unwrap()),
self.len.checked_add(n).unwrap(),
);
self.realloc(new_cap);
}
&mut self.spare_tail_capacity_mut()[..n]
}
/// Reserves capacity for at least `n` additional tail elements.
pub fn reserve_tail(&mut self, n: usize) {
self.extend_tail(n);
}
/// Returns the remaining spare capacity of the tail as a slice of
/// `MaybeUninit<U>`.
///
/// The returned slice can be used to fill the tail with data before marking
/// the data as initialized using [`Self::set_tail_len`].
pub fn spare_tail_capacity_mut(&mut self) -> &mut [MaybeUninit<U>] {
&mut self.data.storage_mut().tail[self.len..]
}
/// Pushes a tail element, reallocating if necessary.
pub fn push_tail(&mut self, val: U) {
// For zero-sized types (unlikely to be useful but hard to prohibit),
// just increment len.
if size_of_val(&val) > 0 {
self.extend_tail(1)[0].write(val);
}
self.len += 1;
}
/// Extends the tail elements from the given slice.
pub fn extend_tail_from_slice(&mut self, other: &[U]) {
// SAFETY: `[MaybeUninit<U>]` and `[U]` have the same layout.
let other = unsafe { core::mem::transmute::<&[U], &[MaybeUninit<U>]>(other) };
self.extend_tail(other.len()).copy_from_slice(other);
self.len += other.len();
}
/// Retrieves a pointer to the head. The tail is guaranteed to immediately
/// after the head (with appropriate padding).
pub fn as_ptr(&self) -> *const T {
&self.head
}
/// Retrieves a mutable pointer to the head. The tail is guaranteed to
/// immediately after the head (with appropriate padding).
pub fn as_mut_ptr(&mut self) -> *mut T {
&mut self.head
}
/// Returns the number of tail elements that can be stored without
/// reallocating.
pub fn tail_capacity(&self) -> usize {
self.data.storage().tail.len()
}
/// Sets the number of tail elements to 0.
pub fn clear_tail(&mut self) {
self.len = 0;
}
/// Truncates the tail to `len` elements. Has no effect if there are already
/// fewer than `len` tail elements.
pub fn truncate_tail(&mut self, len: usize) {
if len < self.len {
self.len = len;
}
}
/// Sets the number of tail elements.
///
/// Panics if `len` is greater than the capacity.
///
/// # Safety
///
/// The caller must ensure that all `len` elements have been initialized.
pub unsafe fn set_tail_len(&mut self, len: usize) {
assert!(len <= self.tail_capacity());
self.len = len;
}
/// Returns the total contiguous byte length of the structure, including
/// both the head and tail elements.
pub fn total_byte_len(&self) -> usize {
size_of_val(&**self)
}
/// Returns the total contiguous byte length of the structure, including
/// both the head and tail elements, including the tail's capacity.
pub fn total_byte_capacity(&self) -> usize {
size_of_val(self.data.storage())
}
}
impl<T, U, const N: usize> Deref for HeaderVec<T, U, N> {
type Target = HeaderSlice<T, [U]>;
fn deref(&self) -> &Self::Target {
// SAFETY: `self.len` tail elements have been initialized.
unsafe { self.data.valid(self.len) }
}
}
impl<T, U, const N: usize> DerefMut for HeaderVec<T, U, N> {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: `self.len` tail elements have been initialized.
unsafe { self.data.valid_mut(self.len) }
}
}
impl<T: Copy, U: Copy, const N: usize> Extend<U> for HeaderVec<T, U, N> {
fn extend<I: IntoIterator<Item = U>>(&mut self, iter: I) {
for item in iter {
self.push_tail(item);
}
}
}
#[cfg(test)]
mod tests {
use super::HeaderVec;
use alloc::vec::Vec;
use core::fmt::Debug;
fn test<T: Copy + Eq + Debug, U: Copy + Eq + Debug, const N: usize>(
head: T,
vals: impl IntoIterator<Item = U>,
) {
let vals = Vec::from_iter(vals);
// Push
{
let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
for &i in &vals {
v.push_tail(i);
}
assert_eq!(v.head, head);
assert_eq!(&v.tail, vals.as_slice());
}
// Extend from slice
{
let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
v.extend_tail_from_slice(&vals);
assert_eq!(v.head, head);
assert_eq!(&v.tail, vals.as_slice());
}
// Extend
{
let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
v.extend(vals.iter().copied());
assert_eq!(v.head, head);
assert_eq!(&v.tail, vals.as_slice());
}
// Reserve + set_len
{
let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
v.reserve_tail(vals.len());
if size_of::<U>() > 0 {
assert_eq!(
v.tail_capacity(),
if size_of::<U>() == 0 {
usize::MAX
} else {
vals.len()
}
);
}
for (s, d) in vals.iter().copied().zip(v.spare_tail_capacity_mut()) {
d.write(s);
}
// SAFETY: all elements are initialized.
unsafe { v.set_tail_len(vals.len()) };
assert_eq!(v.head, head);
assert_eq!(&v.tail, vals.as_slice());
}
}
#[test]
fn test_push() {
test::<u8, u32, 3>(0x10, 0..200);
}
#[test]
fn test_zero_array() {
test::<u8, u32, 0>(0x10, 0..200);
}
#[test]
fn test_zst_head() {
test::<(), u32, 3>((), 0..200);
}
#[test]
fn test_zst_tail() {
test::<u8, (), 0>(0x10, (0..200).map(|_| ()));
}
#[test]
fn test_zst_both() {
test::<(), (), 0>((), (0..200).map(|_| ()));
}
#[test]
#[should_panic(expected = "ZST tail slice overflow")]
fn test_zst_overflow() {
let mut v: HeaderVec<u8, (), 0> = HeaderVec::new(0);
v.push_tail(());
v.extend_tail_from_slice(&[(); usize::MAX]);
}
}