headervec/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! This module implements the `HeaderVec` type for constructing dynamically
//! sized values that have a fixed size header and a variable sized element
//! type. This is a common pattern in IOCTL input buffers.

// UNSAFETY: Implementing a custom data structure that requires manual memory
// management and pointer manipulation.
#![expect(unsafe_code)]
#![no_std]

extern crate alloc;

use alloc::alloc::Layout;
use alloc::alloc::alloc;
use alloc::alloc::handle_alloc_error;
use alloc::boxed::Box;
use core::cmp;
use core::mem::MaybeUninit;
use core::ops::Deref;
use core::ops::DerefMut;
use core::ptr::NonNull;

/// A type that represents a fixed-sized header followed by a variable-sized
/// tail.
#[repr(C)]
#[derive(Debug)]
pub struct HeaderSlice<T, U: ?Sized> {
    /// The fixed-sized header.
    pub head: T,
    /// The variable-sized tail.
    pub tail: U,
}

impl<T, U> HeaderSlice<T, [U]> {
    fn ptr_from_raw_parts(ptr: *const T, len: usize) -> *const Self {
        // Create a [T] (the inner type doesn't actually matter) with `len`
        // elements, then cast it to a HeaderSlice<T, [U]>. The cast via `as`
        // preserves the element count.
        //
        // FUTURE: use [`core::ptr::from_raw_parts`] once it is stable.
        core::ptr::slice_from_raw_parts(ptr, len) as *const Self
    }

    fn ptr_from_raw_parts_mut(ptr: *mut T, len: usize) -> *mut Self {
        // Create a [T] (the inner type doesn't actually matter) with `len`
        // elements, then cast it to a HeaderSlice<T, [U]>. The cast via `as`
        // preserves the element count.
        //
        // FUTURE: use [`core::ptr::from_raw_parts_mut`] once it is stable.
        core::ptr::slice_from_raw_parts_mut(ptr, len) as *mut Self
    }

    /// # Safety
    /// The caller must ensure that `ptr` points to a `T` followed by `len`
    /// elements of `U`, valid for lifetime `'a`.
    unsafe fn from_raw_parts<'a>(ptr: *const T, len: usize) -> &'a Self {
        // SAFETY: the caller ensures that the resulting pointer is valid for
        // lifetime `'a`.
        unsafe { &*Self::ptr_from_raw_parts(ptr, len) }
    }

    /// # Safety
    /// The caller must ensure that `ptr` points to a `T` followed by `len`
    /// elements of `U`, valid for lifetime `'a`.
    unsafe fn from_raw_parts_mut<'a>(ptr: *mut T, len: usize) -> &'a mut Self {
        // SAFETY: the caller ensures that the resulting pointer is valid for
        // lifetime `'a`.
        unsafe { &mut *Self::ptr_from_raw_parts_mut(ptr, len) }
    }
}

#[derive(Debug)]
enum Data<T, U, const N: usize> {
    Fixed(HeaderSlice<T, [MaybeUninit<U>; N]>),
    Alloc(Box<HeaderSlice<T, [MaybeUninit<U>]>>),
}

impl<T, U, const N: usize> Data<T, U, N> {
    /// # Safety
    ///
    /// The caller must ensure that the first `len` elements have been initialized.
    unsafe fn valid(&self, len: usize) -> &HeaderSlice<T, [U]> {
        // SAFETY: the caller has ensured that the first `len` elements have been
        // initialized.
        unsafe { HeaderSlice::from_raw_parts(core::ptr::from_ref(self.storage()).cast(), len) }
    }

    /// # Safety
    ///
    /// The caller must ensure that the first `len` elements have been initialized.
    unsafe fn valid_mut(&mut self, len: usize) -> &mut HeaderSlice<T, [U]> {
        // SAFETY: the caller has ensured that the first `len` elements have been
        // initialized.
        unsafe {
            HeaderSlice::from_raw_parts_mut(core::ptr::from_mut(self.storage_mut()).cast(), len)
        }
    }

    fn storage(&self) -> &HeaderSlice<T, [MaybeUninit<U>]> {
        let p: &HeaderSlice<T, [MaybeUninit<U>]> = match self {
            Data::Fixed(p) => p,
            Data::Alloc(p) => p,
        };
        if size_of::<U>() == 0 {
            // SAFETY: the tail element is a ZST so its slice is valid for any
            // length.
            unsafe { HeaderSlice::from_raw_parts(&raw const p.head, usize::MAX) }
        } else {
            p
        }
    }

    fn storage_mut(&mut self) -> &mut HeaderSlice<T, [MaybeUninit<U>]> {
        let p: &mut HeaderSlice<T, [MaybeUninit<U>]> = match self {
            Data::Fixed(p) => p,
            Data::Alloc(p) => p,
        };
        if size_of::<U>() == 0 {
            // SAFETY: the tail element is a ZST so its slice is valid for any
            // length.
            unsafe { HeaderSlice::from_raw_parts_mut(&raw mut p.head, usize::MAX) }
        } else {
            p
        }
    }
}

/// Implements a `Vec`-like type for building structures with a fixed-sized
/// prefix before a dynamic number of elements.
///
/// To avoid allocations in common cases, the header and elements are stored
/// internally without allocating until the element count would exceed the
/// statically determined capacity.
///
/// Only a small portion of the `Vec` interface is supported. Additional methods
/// can be added as needed.
///
/// The data managed by this type must be `Copy`. This simplifies the resource
/// management and should be sufficient for most use cases.
///
/// # Example
/// ```
/// # use headervec::HeaderVec;
/// #[derive(Copy, Clone)]
/// struct Header { x: u32 }
/// let mut v = HeaderVec::<Header, u8, 10>::new(Header{ x: 1234 });
/// v.push_tail(5);
/// v.push_tail(6);
/// assert_eq!(v.head.x, 1234);
/// assert_eq!(&v.tail, &[5, 6]);
/// ```
#[derive(Debug)]
pub struct HeaderVec<T, U, const N: usize> {
    data: Data<T, U, N>,
    len: usize,
}

impl<T: Copy + Default, U: Copy, const N: usize> Default for HeaderVec<T, U, N> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T: Copy, U: Copy, const N: usize> HeaderVec<T, U, N> {
    /// Constructs a new `HeaderVec` with a header of `head` and no tail
    /// elements.
    pub fn new(head: T) -> Self {
        Self {
            data: Data::Fixed(HeaderSlice {
                head,
                tail: [const { MaybeUninit::uninit() }; N],
            }),
            len: 0,
        }
    }

    /// Constructs a new `HeaderVec` with a header of `head` and no tail
    /// elements, but with a dynamically allocated capacity for `cap` elements.
    pub fn with_capacity(head: T, cap: usize) -> Self {
        let mut vec = Self::new(head);
        if cap > vec.tail_capacity() {
            vec.realloc(cap);
        }
        vec
    }

    fn realloc(&mut self, cap: usize) {
        assert!(cap > self.len);
        assert!(size_of::<U>() > 0);

        let base_layout = Layout::new::<HeaderSlice<T, [MaybeUninit<U>; 0]>>();
        let layout = Layout::from_size_align(
            base_layout
                .size()
                .checked_add(size_of::<U>().checked_mul(cap).unwrap())
                .unwrap(),
            base_layout.align(),
        )
        .unwrap();

        // SAFETY: `layout` is correctly constructed and is non-empty.
        let alloc = unsafe { alloc(layout) };
        let Some(alloc) = NonNull::new(alloc) else {
            handle_alloc_error(layout);
        };
        // Copy the head.
        // SAFETY: `alloc` starts with `T`.
        unsafe {
            alloc.cast::<T>().write(self.data.storage_mut().head);
        }
        // Build the fat pointer to the DST.
        let alloc =
            HeaderSlice::<T, [MaybeUninit<U>]>::ptr_from_raw_parts_mut(alloc.as_ptr().cast(), cap);
        // SAFETY: `head` has been initialized and `tail` is `MaybeUninit`.
        // `alloc` was allocated with the same layout `Box::new` would use.
        let mut alloc = unsafe { Box::from_raw(alloc) };
        // Copy the initialized portion of the tail.
        alloc.tail[..self.len].copy_from_slice(&self.data.storage_mut().tail[..self.len]);
        self.data = Data::Alloc(alloc);
    }

    fn extend_tail(&mut self, n: usize) -> &mut [MaybeUninit<U>] {
        let cap = self.tail_capacity();
        if cap - self.len < n {
            assert!(size_of::<U>() > 0, "ZST tail slice overflow");
            // Double the current capacity to ensure a geometric progression
            // (avoiding O(n^2) allocations).
            let new_cap = cmp::max(
                cmp::max(8, cap.checked_mul(2).unwrap()),
                self.len.checked_add(n).unwrap(),
            );
            self.realloc(new_cap);
        }
        &mut self.spare_tail_capacity_mut()[..n]
    }

    /// Reserves capacity for at least `n` additional tail elements.
    pub fn reserve_tail(&mut self, n: usize) {
        self.extend_tail(n);
    }

    /// Returns the remaining spare capacity of the tail as a slice of
    /// `MaybeUninit<U>`.
    ///
    /// The returned slice can be used to fill the tail with data before marking
    /// the data as initialized using [`Self::set_tail_len`].
    pub fn spare_tail_capacity_mut(&mut self) -> &mut [MaybeUninit<U>] {
        &mut self.data.storage_mut().tail[self.len..]
    }

    /// Pushes a tail element, reallocating if necessary.
    pub fn push_tail(&mut self, val: U) {
        // For zero-sized types (unlikely to be useful but hard to prohibit),
        // just increment len.
        if size_of_val(&val) > 0 {
            self.extend_tail(1)[0].write(val);
        }
        self.len += 1;
    }

    /// Extends the tail elements from the given slice.
    pub fn extend_tail_from_slice(&mut self, other: &[U]) {
        // SAFETY: `[MaybeUninit<U>]` and `[U]` have the same layout.
        let other = unsafe { core::mem::transmute::<&[U], &[MaybeUninit<U>]>(other) };
        self.extend_tail(other.len()).copy_from_slice(other);
        self.len += other.len();
    }

    /// Retrieves a pointer to the head. The tail is guaranteed to immediately
    /// after the head (with appropriate padding).
    pub fn as_ptr(&self) -> *const T {
        &self.head
    }

    /// Retrieves a mutable pointer to the head. The tail is guaranteed to
    /// immediately after the head (with appropriate padding).
    pub fn as_mut_ptr(&mut self) -> *mut T {
        &mut self.head
    }

    /// Returns the number of tail elements that can be stored without
    /// reallocating.
    pub fn tail_capacity(&self) -> usize {
        self.data.storage().tail.len()
    }

    /// Sets the number of tail elements to 0.
    pub fn clear_tail(&mut self) {
        self.len = 0;
    }

    /// Truncates the tail to `len` elements. Has no effect if there are already
    /// fewer than `len` tail elements.
    pub fn truncate_tail(&mut self, len: usize) {
        if len < self.len {
            self.len = len;
        }
    }

    /// Sets the number of tail elements.
    ///
    /// Panics if `len` is greater than the capacity.
    ///
    /// # Safety
    ///
    /// The caller must ensure that all `len` elements have been initialized.
    pub unsafe fn set_tail_len(&mut self, len: usize) {
        assert!(len <= self.tail_capacity());
        self.len = len;
    }

    /// Returns the total contiguous byte length of the structure, including
    /// both the head and tail elements.
    pub fn total_byte_len(&self) -> usize {
        size_of_val(&**self)
    }

    /// Returns the total contiguous byte length of the structure, including
    /// both the head and tail elements, including the tail's capacity.
    pub fn total_byte_capacity(&self) -> usize {
        size_of_val(self.data.storage())
    }
}

impl<T, U, const N: usize> Deref for HeaderVec<T, U, N> {
    type Target = HeaderSlice<T, [U]>;
    fn deref(&self) -> &Self::Target {
        // SAFETY: `self.len` tail elements have been initialized.
        unsafe { self.data.valid(self.len) }
    }
}

impl<T, U, const N: usize> DerefMut for HeaderVec<T, U, N> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY: `self.len` tail elements have been initialized.
        unsafe { self.data.valid_mut(self.len) }
    }
}

impl<T: Copy, U: Copy, const N: usize> Extend<U> for HeaderVec<T, U, N> {
    fn extend<I: IntoIterator<Item = U>>(&mut self, iter: I) {
        for item in iter {
            self.push_tail(item);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::HeaderVec;
    use alloc::vec::Vec;
    use core::fmt::Debug;

    fn test<T: Copy + Eq + Debug, U: Copy + Eq + Debug, const N: usize>(
        head: T,
        vals: impl IntoIterator<Item = U>,
    ) {
        let vals = Vec::from_iter(vals);
        // Push
        {
            let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
            for &i in &vals {
                v.push_tail(i);
            }
            assert_eq!(v.head, head);
            assert_eq!(&v.tail, vals.as_slice());
        }
        // Extend from slice
        {
            let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
            v.extend_tail_from_slice(&vals);
            assert_eq!(v.head, head);
            assert_eq!(&v.tail, vals.as_slice());
        }
        // Extend
        {
            let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
            v.extend(vals.iter().copied());
            assert_eq!(v.head, head);
            assert_eq!(&v.tail, vals.as_slice());
        }
        // Reserve + set_len
        {
            let mut v: HeaderVec<T, U, N> = HeaderVec::new(head);
            v.reserve_tail(vals.len());
            if size_of::<U>() > 0 {
                assert_eq!(
                    v.tail_capacity(),
                    if size_of::<U>() == 0 {
                        usize::MAX
                    } else {
                        vals.len()
                    }
                );
            }
            for (s, d) in vals.iter().copied().zip(v.spare_tail_capacity_mut()) {
                d.write(s);
            }
            // SAFETY: all elements are initialized.
            unsafe { v.set_tail_len(vals.len()) };
            assert_eq!(v.head, head);
            assert_eq!(&v.tail, vals.as_slice());
        }
    }

    #[test]
    fn test_push() {
        test::<u8, u32, 3>(0x10, 0..200);
    }

    #[test]
    fn test_zero_array() {
        test::<u8, u32, 0>(0x10, 0..200);
    }

    #[test]
    fn test_zst_head() {
        test::<(), u32, 3>((), 0..200);
    }

    #[test]
    fn test_zst_tail() {
        test::<u8, (), 0>(0x10, (0..200).map(|_| ()));
    }

    #[test]
    fn test_zst_both() {
        test::<(), (), 0>((), (0..200).map(|_| ()));
    }

    #[test]
    #[should_panic(expected = "ZST tail slice overflow")]
    fn test_zst_overflow() {
        let mut v: HeaderVec<u8, (), 0> = HeaderVec::new(0);
        v.push_tail(());
        v.extend_tail_from_slice(&[(); usize::MAX]);
    }
}