hcl_compat_uefi_nvram_storage/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! HCL-compatible UEFI nvram variable storage format.
//!
//! Stores Nvram variables as a _packed_ byte-buffer of structs + associated
//! variable length data, in the same format as the earlier Microsoft HCL
//! versions.
//!
//! # A brief comment about the data representation
//!
//! Because variables are stored in the buffer back-to-back with no padding, the
//! UTF-16 encoded `name` field is _not_ guaranteed to be properly aligned,
//! which means it's invalid to reference it as a `&[u16]`, or any similar
//! wrapper type (e.g: `widestring::U16CStr`).

pub mod storage_backend;

use guid::Guid;
use std::fmt::Debug;
use storage_backend::StorageBackend;
use ucs2::Ucs2LeSlice;
use uefi_nvram_storage::EFI_TIME;
use uefi_nvram_storage::NextVariable;
use uefi_nvram_storage::NvramStorage;
use uefi_nvram_storage::NvramStorageError;
use uefi_nvram_storage::in_memory;
use zerocopy::FromBytes;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

const EFI_MAX_VARIABLE_NAME_SIZE: usize = 2 * 1024;
const EFI_MAX_VARIABLE_DATA_SIZE: usize = 32 * 1024;

// Max size allows two re-sizings, max size of 128K
// TODO: how big required for secure boot with db/dbx?
const INITIAL_NVRAM_SIZE: usize = 32768;
const MAXIMUM_NVRAM_SIZE: usize = INITIAL_NVRAM_SIZE * 4;

mod format {
    use super::*;
    use open_enum::open_enum;
    use static_assertions::const_assert_eq;

    open_enum! {
        #[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
        pub enum NvramHeaderType: u32 {
            VARIABLE = 0,
        }
    }

    #[repr(C)]
    #[derive(Copy, Clone, Debug, IntoBytes, Immutable, KnownLayout, FromBytes)]
    pub struct NvramHeader {
        pub header_type: NvramHeaderType,
        pub length: u32, // Total length of the variable, in bytes. Includes the header.
    }

    const_assert_eq!(8, size_of::<NvramHeader>());

    #[repr(C)]
    #[derive(Copy, Clone, Debug, IntoBytes, Immutable, KnownLayout, FromBytes)]
    pub struct NvramVariable {
        pub header: NvramHeader, // Set to type NvramVariable
        pub attributes: u32,
        pub timestamp: EFI_TIME, // Only used by authenticated variables
        pub vendor: Guid,
        pub name_bytes: u16, // max name size of 2K, in _bytes_ not number of characters
        pub data_bytes: u16, // max data size of 32K
                             // std::uint16_t Name[];
                             // std::uint8_t Data[]; // Follows after Name.
    }
    const_assert_eq!(48, size_of::<NvramVariable>());
}

/// Stores Nvram variables in files as a _packed_ byte-buffer of structs +
/// associated variable length data.
#[cfg_attr(feature = "inspect", derive(inspect::Inspect))]
pub struct HclCompatNvram<S> {
    quirks: HclCompatNvramQuirks,

    #[cfg_attr(feature = "inspect", inspect(skip))]
    storage: S,

    in_memory: in_memory::InMemoryNvram,

    // reuse the same allocation for the nvram_buf, trading off steady-state
    // memory usage for a more consistent (albeit larger) memory footprint, and
    // reduced allocator pressure
    #[cfg_attr(feature = "inspect", inspect(skip))] // internal bookkeeping - not worth inspecting
    nvram_buf: Vec<u8>,
}

/// "Quirks" to take into account when loading/storing nvram blob data.
#[cfg_attr(feature = "inspect", derive(inspect::Inspect))]
pub struct HclCompatNvramQuirks {
    /// When loading nvram variables from storage, don't fail the entire load
    /// process when encountering variables that are missing null terminators in
    /// their name. Instead, skip loading any such variables, and continue on
    /// with the load.
    ///
    /// # Context
    ///
    /// Due to a (now fixed) bug in a previous version of Microsoft HCL, it was
    /// possible for non-null-terminated nvram variables to slip-through
    /// validation and get persisted to disk.
    ///
    /// Enabling this quirk will allow "salvaging" the rest of the non-corrupt
    /// nvram variables, which may be preferable over having the VM fail to boot
    /// at all.
    pub skip_corrupt_vars_with_missing_null_term: bool,
}

impl<S: StorageBackend> HclCompatNvram<S> {
    /// Create a new [`HclCompatNvram`]
    pub fn new(storage: S, quirks: Option<HclCompatNvramQuirks>) -> Self {
        Self {
            quirks: quirks.unwrap_or(HclCompatNvramQuirks {
                skip_corrupt_vars_with_missing_null_term: false,
            }),

            storage,

            in_memory: in_memory::InMemoryNvram::new(),

            nvram_buf: Vec::new(),
        }
    }

    async fn lazy_load_from_storage(&mut self) -> Result<(), NvramStorageError> {
        let res = self.lazy_load_from_storage_inner().await;
        if let Err(e) = &res {
            tracing::error!(
                error = e as &dyn std::error::Error,
                "storage contains corrupt nvram state"
            )
        }
        res
    }

    async fn lazy_load_from_storage_inner(&mut self) -> Result<(), NvramStorageError> {
        if !self.nvram_buf.is_empty() {
            return Ok(());
        }

        let nvram_buf = self
            .storage
            .restore()
            .await
            .map_err(|e| NvramStorageError::Load(e.into()))?
            .unwrap_or_default();

        if nvram_buf.len() > MAXIMUM_NVRAM_SIZE {
            return Err(NvramStorageError::Load(
                format!(
                    "Existing nvram state exceeds MAXIMUM_NVRAM_SIZE ({} > {})",
                    nvram_buf.len(),
                    MAXIMUM_NVRAM_SIZE
                )
                .into(),
            ));
        }

        // load state into memory
        self.in_memory.clear();
        self.nvram_buf = nvram_buf;
        let mut buf = self.nvram_buf.as_slice();
        // TODO: zerocopy: error propagation (https://github.com/microsoft/openvmm/issues/759)
        while let Ok((header, _)) = format::NvramHeader::read_from_prefix(buf) {
            if buf.len() < header.length as usize {
                return Err(NvramStorageError::Load(
                    format!(
                        "unexpected EOF. expected at least {} more bytes, but only found {}",
                        header.length,
                        buf.len()
                    )
                    .into(),
                ));
            }

            let entry_buf = {
                let (entry_buf, remaining) = buf.split_at(header.length as usize);
                buf = remaining;
                entry_buf
            };

            match header.header_type {
                format::NvramHeaderType::VARIABLE => {}
                _ => {
                    return Err(NvramStorageError::Load(
                        format!("unknown header type: {:?}", header.header_type).into(),
                    ));
                }
            }

            // validation check above ensures that at this point, entry_buf
            // corresponds to a VARIABLE entry

            let (var_header, var_name, var_data) = {
                // TODO: zerocopy: error propagation (https://github.com/microsoft/openvmm/issues/759)
                // TODO: zerocopy: manual fix - review carefully! (https://github.com/microsoft/openvmm/issues/759)
                let (var_header, var_length_data) =
                    format::NvramVariable::read_from_prefix(entry_buf)
                        .map_err(|_| NvramStorageError::Load("variable entry too short".into()))?;

                if var_length_data.len()
                    != var_header.name_bytes as usize + var_header.data_bytes as usize
                {
                    return Err(NvramStorageError::Load(
                        "mismatch between header length and variable data size".into(),
                    ));
                }

                let (var_name, var_data) = var_length_data.split_at(var_header.name_bytes as usize);

                (var_header, var_name, var_data)
            };

            if var_name.len() > EFI_MAX_VARIABLE_NAME_SIZE {
                return Err(NvramStorageError::Load(
                    format!(
                        "variable name too big. {} > {}",
                        var_name.len(),
                        EFI_MAX_VARIABLE_NAME_SIZE
                    )
                    .into(),
                ));
            }

            if var_data.len() > EFI_MAX_VARIABLE_DATA_SIZE {
                return Err(NvramStorageError::Load(
                    format!(
                        "variable data too big. {} > {}",
                        var_data.len(),
                        EFI_MAX_VARIABLE_DATA_SIZE
                    )
                    .into(),
                ));
            }

            let name = match Ucs2LeSlice::from_slice_with_nul(var_name) {
                Ok(name) => name,
                Err(e) => {
                    if self.quirks.skip_corrupt_vars_with_missing_null_term {
                        let var = {
                            let mut var = var_name.to_vec();
                            var.push(0);
                            var.push(0);
                            ucs2::Ucs2LeVec::from_vec_with_nul(var)
                        };
                        tracing::warn!(?var, "skipping corrupt nvram var (missing null term)");
                        continue;
                    } else {
                        return Err(NvramStorageError::Load(e.into()));
                    }
                }
            };

            self.in_memory
                .set_variable(
                    name,
                    var_header.vendor,
                    var_header.attributes,
                    var_data.to_vec(),
                    var_header.timestamp,
                )
                .await?;
        }

        if !buf.is_empty() {
            return Err(NvramStorageError::Load(
                "existing nvram state contains excess data".into(),
            ));
        }

        Ok(())
    }

    /// Dump in-memory nvram to the underlying storage device.
    async fn flush_storage(&mut self) -> Result<(), NvramStorageError> {
        self.nvram_buf.clear();

        for in_memory::VariableEntry {
            vendor,
            name,
            data,
            timestamp,
            attr,
        } in self.in_memory.iter()
        {
            self.nvram_buf.extend_from_slice(
                format::NvramVariable {
                    header: format::NvramHeader {
                        header_type: format::NvramHeaderType::VARIABLE,
                        length: (size_of::<format::NvramVariable>()
                            + name.as_bytes().len()
                            + data.len()) as u32,
                    },
                    attributes: attr,
                    timestamp,
                    vendor,
                    name_bytes: name.as_bytes().len() as u16,
                    data_bytes: data.len() as u16,
                }
                .as_bytes(),
            );
            self.nvram_buf.extend_from_slice(name.as_bytes());
            self.nvram_buf.extend_from_slice(data);
        }

        // callers make sure that any operations that add/append to vars will
        // not result in file size exceeding MAXIMUM_NVRAM_SIZE
        assert!(self.nvram_buf.len() < MAXIMUM_NVRAM_SIZE);

        self.storage
            .persist(self.nvram_buf.clone())
            .await
            .map_err(|e| NvramStorageError::Commit(e.into()))?;

        Ok(())
    }

    /// Iterate over the NVRAM entries. This function asynchronously loads the
    /// NVRAM contents into memory from the backing storage if necessary.
    pub async fn iter(
        &mut self,
    ) -> Result<impl Iterator<Item = in_memory::VariableEntry<'_>>, NvramStorageError> {
        self.lazy_load_from_storage().await?;
        Ok(self.in_memory.iter())
    }
}

#[async_trait::async_trait]
impl<S: StorageBackend> NvramStorage for HclCompatNvram<S> {
    async fn get_variable(
        &mut self,
        name: &Ucs2LeSlice,
        vendor: Guid,
    ) -> Result<Option<(u32, Vec<u8>, EFI_TIME)>, NvramStorageError> {
        self.lazy_load_from_storage().await?;

        if name.as_bytes().len() > EFI_MAX_VARIABLE_NAME_SIZE {
            return Err(NvramStorageError::VariableNameTooLong);
        }

        self.in_memory.get_variable(name, vendor).await
    }

    async fn set_variable(
        &mut self,
        name: &Ucs2LeSlice,
        vendor: Guid,
        attr: u32,
        data: Vec<u8>,
        timestamp: EFI_TIME,
    ) -> Result<(), NvramStorageError> {
        self.lazy_load_from_storage().await?;

        if name.as_bytes().len() > EFI_MAX_VARIABLE_NAME_SIZE {
            return Err(NvramStorageError::VariableNameTooLong);
        }

        if data.len() > EFI_MAX_VARIABLE_DATA_SIZE {
            return Err(NvramStorageError::VariableDataTooLong);
        }

        // don't overshoot MAXIMUM_NVRAM_SIZE
        {
            let new_file_size = match self.in_memory.get_variable(name, vendor).await? {
                Some((_, existing_data, _)) => {
                    self.nvram_buf.len() - existing_data.len() + data.len()
                }
                None => {
                    self.nvram_buf.len()
                        + name.as_bytes().len()
                        + data.len()
                        + size_of::<format::NvramVariable>()
                }
            };

            if new_file_size > MAXIMUM_NVRAM_SIZE {
                return Err(NvramStorageError::OutOfSpace);
            }
        }

        self.in_memory
            .set_variable(name, vendor, attr, data, timestamp)
            .await?;
        self.flush_storage().await?;

        Ok(())
    }

    async fn append_variable(
        &mut self,
        name: &Ucs2LeSlice,
        vendor: Guid,
        data: Vec<u8>,
        timestamp: EFI_TIME,
    ) -> Result<bool, NvramStorageError> {
        self.lazy_load_from_storage().await?;

        if name.as_bytes().len() > EFI_MAX_VARIABLE_NAME_SIZE {
            return Err(NvramStorageError::VariableNameTooLong);
        }

        if let Some((_, existing_data, _)) = self.in_memory.get_variable(name, vendor).await? {
            if existing_data.len() + data.len() > EFI_MAX_VARIABLE_DATA_SIZE {
                return Err(NvramStorageError::VariableDataTooLong);
            }

            let new_file_size = self.nvram_buf.len() + data.len();

            if new_file_size > MAXIMUM_NVRAM_SIZE {
                return Err(NvramStorageError::OutOfSpace);
            }
        }

        let found = self
            .in_memory
            .append_variable(name, vendor, data, timestamp)
            .await?;
        self.flush_storage().await?;

        Ok(found)
    }

    async fn remove_variable(
        &mut self,
        name: &Ucs2LeSlice,
        vendor: Guid,
    ) -> Result<bool, NvramStorageError> {
        self.lazy_load_from_storage().await?;

        if name.as_bytes().len() > EFI_MAX_VARIABLE_NAME_SIZE {
            return Err(NvramStorageError::VariableNameTooLong);
        }

        let removed = self.in_memory.remove_variable(name, vendor).await?;
        self.flush_storage().await?;

        Ok(removed)
    }

    async fn next_variable(
        &mut self,
        name_vendor: Option<(&Ucs2LeSlice, Guid)>,
    ) -> Result<NextVariable, NvramStorageError> {
        self.lazy_load_from_storage().await?;

        if let Some((name, _)) = name_vendor {
            if name.as_bytes().len() > EFI_MAX_VARIABLE_NAME_SIZE {
                return Err(NvramStorageError::VariableNameTooLong);
            }
        }

        self.in_memory.next_variable(name_vendor).await
    }
}

#[cfg(test)]
mod test {
    use super::storage_backend::StorageBackend;
    use super::storage_backend::StorageBackendError;
    use super::*;
    use pal_async::async_test;
    use ucs2::Ucs2LeVec;
    use uefi_nvram_storage::in_memory::impl_agnostic_tests;
    use wchar::wchz;

    /// An ephemeral implementation of [`StorageBackend`] backed by an in-memory
    /// buffer. Useful for tests, stateless VM scenarios.
    #[derive(Default)]
    pub struct EphemeralStorageBackend(Option<Vec<u8>>);

    #[async_trait::async_trait]
    impl StorageBackend for EphemeralStorageBackend {
        async fn persist(&mut self, data: Vec<u8>) -> Result<(), StorageBackendError> {
            self.0 = Some(data);
            Ok(())
        }

        async fn restore(&mut self) -> Result<Option<Vec<u8>>, StorageBackendError> {
            Ok(self.0.clone())
        }
    }

    #[async_test]
    async fn test_single_variable() {
        let mut storage = EphemeralStorageBackend::default();
        let mut nvram = HclCompatNvram::new(&mut storage, None);
        impl_agnostic_tests::test_single_variable(&mut nvram).await;
    }

    #[async_test]
    async fn test_multiple_variable() {
        let mut storage = EphemeralStorageBackend::default();
        let mut nvram = HclCompatNvram::new(&mut storage, None);
        impl_agnostic_tests::test_multiple_variable(&mut nvram).await;
    }

    #[async_test]
    async fn test_next() {
        let mut storage = EphemeralStorageBackend::default();
        let mut nvram = HclCompatNvram::new(&mut storage, None);
        impl_agnostic_tests::test_next(&mut nvram).await;
    }

    #[async_test]
    async fn boundary_conditions() {
        let mut storage = EphemeralStorageBackend::default();
        let mut nvram = HclCompatNvram::new(&mut storage, None);

        let vendor = Guid::new_random();
        let attr = 0x1234;
        let data = vec![0x1, 0x2, 0x3, 0x4, 0x5];
        let timestamp = EFI_TIME::default();

        let name_ok = Ucs2LeVec::from_vec_with_nul(
            std::iter::repeat([0, b'a'])
                .take((EFI_MAX_VARIABLE_NAME_SIZE / 2) - 1)
                .chain(Some([0, 0]))
                .flat_map(|x| x.into_iter())
                .collect(),
        )
        .unwrap();
        let name_too_big = Ucs2LeVec::from_vec_with_nul(
            std::iter::repeat([0, b'a'])
                .take(EFI_MAX_VARIABLE_NAME_SIZE / 2)
                .chain(Some([0, 0]))
                .flat_map(|x| x.into_iter())
                .collect(),
        )
        .unwrap();

        nvram
            .set_variable(&name_ok, vendor, attr, data.clone(), timestamp)
            .await
            .unwrap();

        let res = nvram
            .set_variable(&name_too_big, vendor, attr, data.clone(), timestamp)
            .await;
        assert!(matches!(res, Err(NvramStorageError::VariableNameTooLong)));

        nvram
            .set_variable(
                &name_ok,
                vendor,
                attr,
                vec![0xff; EFI_MAX_VARIABLE_DATA_SIZE],
                timestamp,
            )
            .await
            .unwrap();

        let res = nvram
            .set_variable(
                &name_ok,
                vendor,
                attr,
                vec![0xff; EFI_MAX_VARIABLE_DATA_SIZE + 1],
                timestamp,
            )
            .await;
        assert!(matches!(res, Err(NvramStorageError::VariableDataTooLong)));

        // make sure we can hit the max-memory error
        loop {
            let res = nvram
                .set_variable(
                    &name_ok,
                    Guid::new_random(), // different guids = different vars
                    attr,
                    vec![0xff; EFI_MAX_VARIABLE_DATA_SIZE],
                    timestamp,
                )
                .await;

            match res {
                Ok(()) => {}
                Err(NvramStorageError::OutOfSpace) => break,
                Err(_) => panic!(),
            }
        }
    }

    #[async_test]
    async fn load_reload() {
        let mut storage = EphemeralStorageBackend::default();

        let vendor1 = Guid::new_random();
        let name1 = Ucs2LeSlice::from_slice_with_nul(wchz!(u16, "var1").as_bytes()).unwrap();
        let vendor2 = Guid::new_random();
        let name2 = Ucs2LeSlice::from_slice_with_nul(wchz!(u16, "var2").as_bytes()).unwrap();
        let vendor3 = Guid::new_random();
        let name3 = Ucs2LeSlice::from_slice_with_nul(wchz!(u16, "var3").as_bytes()).unwrap();
        let attr = 0x1234;
        let data = vec![0x1, 0x2, 0x3, 0x4, 0x5];
        let timestamp = EFI_TIME::default();

        let mut nvram = HclCompatNvram::new(&mut storage, None);
        nvram
            .set_variable(name1, vendor1, attr, data.clone(), timestamp)
            .await
            .unwrap();
        nvram
            .set_variable(name2, vendor2, attr, data.clone(), timestamp)
            .await
            .unwrap();
        nvram
            .set_variable(name3, vendor3, attr, data.clone(), timestamp)
            .await
            .unwrap();

        drop(nvram);

        // reload
        let mut nvram = HclCompatNvram::new(&mut storage, None);

        let (result_attr, result_data, result_timestamp) =
            nvram.get_variable(name1, vendor1).await.unwrap().unwrap();
        assert_eq!(result_attr, attr);
        assert_eq!(result_data, data);
        assert_eq!(result_timestamp, timestamp);

        let (result_attr, result_data, result_timestamp) =
            nvram.get_variable(name2, vendor2).await.unwrap().unwrap();
        assert_eq!(result_attr, attr);
        assert_eq!(result_data, data);
        assert_eq!(result_timestamp, timestamp);

        let (result_attr, result_data, result_timestamp) =
            nvram.get_variable(name3, vendor3).await.unwrap().unwrap();
        assert_eq!(result_attr, attr);
        assert_eq!(result_data, data);
        assert_eq!(result_timestamp, timestamp);
    }
}