hcl/
ioctl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Interface to `mshv_vtl` driver.

mod deferred;

pub mod aarch64;
pub mod snp;
pub mod tdx;
pub mod x64;

use self::deferred::DeferredActionSlots;
use self::ioctls::*;
use crate::GuestVtl;
use crate::ioctl::deferred::DeferredAction;
use crate::mapped_page::MappedPage;
use crate::protocol;
use crate::protocol::EnterModes;
use crate::protocol::HCL_REG_PAGE_OFFSET;
use crate::protocol::HCL_VMSA_GUEST_VSM_PAGE_OFFSET;
use crate::protocol::HCL_VMSA_PAGE_OFFSET;
use crate::protocol::MSHV_APIC_PAGE_OFFSET;
use crate::protocol::hcl_intr_offload_flags;
use crate::protocol::hcl_run;
use deferred::RegisteredDeferredActions;
use deferred::push_deferred_action;
use deferred::register_deferred_actions;
use hv1_structs::ProcessorSet;
use hv1_structs::VtlArray;
use hvdef::HV_PAGE_SIZE;
use hvdef::HV_PARTITION_ID_SELF;
use hvdef::HV_VP_INDEX_SELF;
use hvdef::HvAllArchRegisterName;
#[cfg(guest_arch = "aarch64")]
use hvdef::HvArm64RegisterName;
use hvdef::HvError;
use hvdef::HvMapGpaFlags;
use hvdef::HvMessage;
use hvdef::HvRegisterName;
use hvdef::HvRegisterValue;
use hvdef::HvRegisterVsmPartitionConfig;
use hvdef::HvStatus;
use hvdef::HvX64RegisterName;
use hvdef::HvX64RegisterPage;
use hvdef::HypercallCode;
use hvdef::Vtl;
use hvdef::hypercall::AssertVirtualInterrupt;
use hvdef::hypercall::HostVisibilityType;
use hvdef::hypercall::HvGpaRange;
use hvdef::hypercall::HvGpaRangeExtended;
use hvdef::hypercall::HvInputVtl;
use hvdef::hypercall::HvInterceptParameters;
use hvdef::hypercall::HvInterceptType;
use hvdef::hypercall::HvRegisterAssoc;
use hvdef::hypercall::HypercallOutput;
use hvdef::hypercall::InitialVpContextX64;
use hvdef::hypercall::ModifyHostVisibility;
use memory_range::MemoryRange;
use pal::unix::pthread::*;
use parking_lot::Mutex;
use private::BackingPrivate;
use sidecar_client::NewSidecarClientError;
use sidecar_client::SidecarClient;
use sidecar_client::SidecarRun;
use sidecar_client::SidecarVp;
use std::cell::UnsafeCell;
use std::fmt::Debug;
use std::fs::File;
use std::io;
use std::os::unix::prelude::*;
use std::sync::Arc;
use std::sync::Once;
use std::sync::atomic::AtomicU8;
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering;
use thiserror::Error;
use user_driver::DmaClient;
use user_driver::memory::MemoryBlock;
use x86defs::snp::SevVmsa;
use x86defs::tdx::TdCallResultCode;
use x86defs::vmx::ApicPage;
use zerocopy::FromBytes;
use zerocopy::FromZeros;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

/// Error returned by HCL operations.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum Error {
    #[error("failed to open mshv device")]
    OpenMshv(#[source] io::Error),
    #[error("failed to open hvcall device")]
    OpenHvcall(#[source] io::Error),
    #[error("failed to open lower VTL memory device")]
    OpenGpa(#[source] io::Error),
    #[error("ReturnToLowerVtl")]
    ReturnToLowerVtl(#[source] nix::Error),
    #[error("AddVtl0Memory")]
    AddVtl0Memory(#[source] nix::Error),
    #[error("hcl_set_vp_register")]
    SetVpRegister(#[source] nix::Error),
    #[error("hcl_get_vp_register")]
    GetVpRegister(#[source] nix::Error),
    #[error("failed to get VP register {reg:#x?} from hypercall")]
    GetVpRegisterHypercall {
        #[cfg(guest_arch = "x86_64")]
        reg: HvX64RegisterName,
        #[cfg(guest_arch = "aarch64")]
        reg: HvArm64RegisterName,
        #[source]
        err: HvError,
    },
    #[error("hcl_request_interrupt")]
    RequestInterrupt(#[source] HvError),
    #[error("hcl_cancel_vp failed")]
    CancelVp(#[source] nix::Error),
    #[error("failed to signal event")]
    SignalEvent(#[source] HvError),
    #[error("failed to post message")]
    PostMessage(#[source] HvError),
    #[error("failed to mmap the vp context {:?}", .1.map(|vtl| format!("for VTL {:?}", vtl)).unwrap_or("".to_string()))]
    MmapVp(#[source] io::Error, Option<Vtl>),
    #[error("failed to set the poll file")]
    SetPollFile(#[source] nix::Error),
    #[error("failed to check hcl capabilities")]
    CheckExtensions(#[source] nix::Error),
    #[error("failed to mmap the register page")]
    MmapRegPage(#[source] io::Error),
    #[error("invalid num signal events")]
    NumSignalEvent(#[source] io::Error),
    #[error("failed to create vtl")]
    CreateVTL(#[source] nix::Error),
    #[error("Gva to gpa translation failed")]
    TranslateGvaToGpa(#[source] TranslateGvaToGpaError),
    #[error("gpa failed vtl access check")]
    CheckVtlAccess(#[source] HvError),
    #[error("failed to set registers using set_vp_registers hypercall")]
    SetRegisters(#[source] HvError),
    #[error("Unknown register name: {0:x}")]
    UnknownRegisterName(u32),
    #[error("Invalid register value")]
    InvalidRegisterValue,
    #[error("failed to set host visibility")]
    SetHostVisibility(#[source] nix::Error),
    #[error("failed to allocate host overlay page")]
    HostOverlayPageExhausted,
    #[error("sidecar error")]
    Sidecar(#[source] sidecar_client::SidecarError),
    #[error("failed to open sidecar")]
    OpenSidecar(#[source] NewSidecarClientError),
    #[error(
        "mismatch between requested isolation type {requested:?} and supported isolation type {supported:?}"
    )]
    MismatchedIsolation {
        supported: IsolationType,
        requested: IsolationType,
    },
    #[error("private page pool allocator missing, required for requested isolation type")]
    MissingPrivateMemory,
    #[error("failed to allocate pages for vp")]
    AllocVp(#[source] anyhow::Error),
}

/// Error for IOCTL errors specifically.
#[derive(Debug, Error)]
#[error("hcl request failed")]
pub struct IoctlError(#[source] pub(crate) nix::Error);

/// Error returned when issuing hypercalls.
#[derive(Debug, Error)]
#[expect(missing_docs)]
pub enum HypercallError {
    #[error("hypercall failed with {0:?}")]
    Hypervisor(HvError),
    #[error("ioctl failed")]
    Ioctl(#[source] IoctlError),
}

impl HypercallError {
    pub(crate) fn check(r: Result<i32, nix::Error>) -> Result<(), Self> {
        match r {
            Ok(n) => HvStatus(n.try_into().expect("hypervisor result out of range"))
                .result()
                .map_err(Self::Hypervisor),
            Err(err) => Err(Self::Ioctl(IoctlError(err))),
        }
    }
}

/// Errors when issuing hypercalls via the kernel direct interface.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum HvcallError {
    #[error(
        "kernel rejected the hypercall, most likely due to the hypercall code not being allowed via set_allowed_hypercalls"
    )]
    HypercallIoctlFailed(#[source] nix::Error),
    #[error("input parameters are larger than a page")]
    InputParametersTooLarge,
    #[error("output parameters are larger than a page")]
    OutputParametersTooLarge,
    #[error("output and input list lengths do not match")]
    InputOutputRepListMismatch,
}

/// Error applying VTL protections.
// TODO: move to `underhill_mem`.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum ApplyVtlProtectionsError {
    #[error(
        "hypervisor returned {output:?} error {hv_error:?} when protecting pages {range} for vtl {vtl:?}"
    )]
    Hypervisor {
        range: MemoryRange,
        output: HypercallOutput,
        #[source]
        hv_error: HvError,
        vtl: HvInputVtl,
    },
    #[error(
        "{failed_operation} when protecting pages {range} with {permissions:x?} for vtl {vtl:?}"
    )]
    Snp {
        #[source]
        failed_operation: snp::SnpPageError,
        range: MemoryRange,
        permissions: x86defs::snp::SevRmpAdjust,
        vtl: HvInputVtl,
    },
    #[error(
        "tdcall failed with {error:?} when protecting pages {range} with permissions {permissions:x?} for vtl {vtl:?}"
    )]
    Tdx {
        error: TdCallResultCode,
        range: MemoryRange,
        permissions: x86defs::tdx::TdgMemPageGpaAttr,
        vtl: HvInputVtl,
    },
    #[error("no valid protections for vtl {0:?}")]
    InvalidVtl(Vtl),
}

/// Error setting guest VSM configuration.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum SetGuestVsmConfigError {
    #[error(
        "hypervisor returned error {hv_error:?} when configuring guest vsm {enable_guest_vsm:?}"
    )]
    Hypervisor {
        enable_guest_vsm: bool,
        hv_error: HvError,
    },
}

/// Error getting the VP idnex from an APIC ID.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum GetVpIndexFromApicIdError {
    #[error("hypervisor returned error {hv_error:?} when querying vp index for {apic_id}")]
    Hypervisor { hv_error: HvError, apic_id: u32 },
}

/// Error setting VSM partition configuration.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum SetVsmPartitionConfigError {
    #[error(
        "hypervisor returned error {hv_error:?} when configuring vsm partition config {config:?}"
    )]
    Hypervisor {
        config: HvRegisterVsmPartitionConfig,
        hv_error: HvError,
    },
}

/// Error translating a GVA to a GPA.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum TranslateGvaToGpaError {
    #[error("hypervisor returned error {hv_error:?} on gva {gva:x}")]
    Hypervisor { gva: u64, hv_error: HvError },
    #[error("sidecar kernel failed on gva {gva:x}")]
    Sidecar {
        gva: u64,
        #[source]
        error: sidecar_client::SidecarError,
    },
}

/// Result from [`Hcl::check_vtl_access`] if vtl permissions were violated
#[derive(Debug)]
pub struct CheckVtlAccessResult {
    /// The intercepting VTL.
    pub vtl: Vtl,
    /// The flags that were denied.
    pub denied_flags: HvMapGpaFlags,
}

/// Error accepting pages.
// TODO: move to `underhill_mem`.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum AcceptPagesError {
    #[error("hypervisor returned {output:?} error {hv_error:?} when accepting pages {range}")]
    Hypervisor {
        range: MemoryRange,
        output: HypercallOutput,
        hv_error: HvError,
    },
    #[error("{failed_operation} when protecting pages {range}")]
    Snp {
        failed_operation: snp::SnpPageError,
        range: MemoryRange,
    },
    #[error("tdcall failed with {error:?} when accepting pages {range}")]
    Tdx {
        error: tdcall::AcceptPagesError,
        range: MemoryRange,
    },
}

// Action translation(to HVCALL) for pin/unpin GPA range.
#[derive(Debug, Copy, Clone)]
enum GpaPinUnpinAction {
    PinGpaRange,
    UnpinGpaRange,
}

/// Error pinning a GPA.
#[derive(Error, Debug)]
#[error("partial success: {ranges_processed} operations succeeded, but encountered an error")]
struct PinUnpinError {
    ranges_processed: usize,
    error: HvError,
}

/// Result of translate gva hypercall from [`Hcl`]
pub struct TranslateResult {
    /// The GPA that the GVA translated to.
    pub gpa_page: u64,
    /// Whether the page was an overlay page.
    pub overlay_page: bool, // Note: hardcoded to false on WHP
}

/// Possible types for rep hypercalls
enum HvcallRepInput<'a, T> {
    /// The actual elements to rep over
    Elements(&'a [T]),
    /// The elements for the rep are implied and only a count is needed
    Count(u16),
}

mod ioctls {
    #![allow(non_camel_case_types)]

    use crate::protocol;
    use hvdef::hypercall::HvRegisterAssoc;
    use nix::ioctl_none;
    use nix::ioctl_read;
    use nix::ioctl_readwrite;
    use nix::ioctl_write_ptr;

    // The unsafe interface to the `mshv` kernel module comprises
    // the following IOCTLs.
    const MSHV_IOCTL: u8 = 0xb8;
    const MSHV_VTL_RETURN_TO_LOWER_VTL: u16 = 0x27;
    const MSHV_SET_VP_REGISTERS: u16 = 0x6;
    const MSHV_GET_VP_REGISTERS: u16 = 0x5;
    const MSHV_HVCALL_SETUP: u16 = 0x1E;
    const MSHV_HVCALL: u16 = 0x1F;
    const MSHV_VTL_ADD_VTL0_MEMORY: u16 = 0x21;
    const MSHV_VTL_SET_POLL_FILE: u16 = 0x25;
    const MSHV_CREATE_VTL: u16 = 0x1D;
    const MSHV_CHECK_EXTENSION: u16 = 0x00;
    const MSHV_VTL_PVALIDATE: u16 = 0x28;
    const MSHV_VTL_RMPADJUST: u16 = 0x29;
    const MSHV_VTL_TDCALL: u16 = 0x32;
    const MSHV_VTL_READ_VMX_CR4_FIXED1: u16 = 0x33;
    const MSHV_VTL_GUEST_VSM_VMSA_PFN: u16 = 0x34;
    const MSHV_VTL_RMPQUERY: u16 = 0x35;
    const MSHV_INVLPGB: u16 = 0x36;
    const MSHV_TLBSYNC: u16 = 0x37;

    #[repr(C)]
    #[derive(Copy, Clone)]
    pub struct mshv_vp_registers {
        pub count: ::std::os::raw::c_int,
        pub regs: *mut HvRegisterAssoc,
    }

    #[repr(C, packed)]
    #[derive(Copy, Clone)]
    pub struct mshv_pvalidate {
        /// Execute the pvalidate instruction on the set of memory pages specified
        pub start_pfn: ::std::os::raw::c_ulonglong,
        pub page_count: ::std::os::raw::c_ulonglong,
        pub validate: ::std::os::raw::c_uchar,
        pub terminate_on_failure: ::std::os::raw::c_uchar,
        /// Set to 1 if the page is RAM (from the kernel's perspective), 0 if
        /// it's device memory.
        pub ram: u8,
        pub padding: [::std::os::raw::c_uchar; 1],
    }

    #[repr(C, packed)]
    #[derive(Copy, Clone)]
    pub struct mshv_rmpadjust {
        /// Execute the rmpadjust instruction on the set of memory pages specified
        pub start_pfn: ::std::os::raw::c_ulonglong,
        pub page_count: ::std::os::raw::c_ulonglong,
        pub value: ::std::os::raw::c_ulonglong,
        pub terminate_on_failure: ::std::os::raw::c_uchar,
        /// Set to 1 if the page is RAM (from the kernel's perspective), 0 if
        /// it's device memory.
        pub ram: u8,
        pub padding: [::std::os::raw::c_uchar; 6],
    }

    #[repr(C, packed)]
    #[derive(Copy, Clone)]
    pub struct mshv_rmpquery {
        /// Execute the rmpquery instruction on the set of memory pages specified
        pub start_pfn: ::std::os::raw::c_ulonglong,
        pub page_count: ::std::os::raw::c_ulonglong,
        pub terminate_on_failure: ::std::os::raw::c_uchar,
        /// Set to 1 if the page is RAM (from the kernel's perspective), 0 if
        /// it's device memory.
        pub ram: u8,
        pub padding: [::std::os::raw::c_uchar; 6],
        /// Output array for the flags, must have at least `page_count` entries.
        pub flags: *mut ::std::os::raw::c_ulonglong,
        /// Output array for the page sizes, must have at least `page_count` entries.
        pub page_size: *mut ::std::os::raw::c_ulonglong,
        /// Output for the amount of pages processed, a scalar.
        pub pages_processed: *mut ::std::os::raw::c_ulonglong,
    }

    #[repr(C, packed)]
    #[derive(Copy, Clone)]
    pub struct mshv_tdcall {
        pub rax: u64, // Call code and returned status
        pub rcx: u64,
        pub rdx: u64,
        pub r8: u64,
        pub r9: u64,
        pub r10_out: u64, // only supported as output
        pub r11_out: u64, // only supported as output
    }

    ioctl_none!(
        /// Relinquish the processor to VTL0.
        hcl_return_to_lower_vtl,
        MSHV_IOCTL,
        MSHV_VTL_RETURN_TO_LOWER_VTL
    );

    ioctl_write_ptr!(
        /// Set a VTL0 register for the current processor of the current
        /// partition.
        /// It is not allowed to set registers for other processors or
        /// other partitions for the security and coherency reasons.
        hcl_set_vp_register,
        MSHV_IOCTL,
        MSHV_SET_VP_REGISTERS,
        mshv_vp_registers
    );

    ioctl_readwrite!(
        /// Get a VTL0 register for the current processor of the current
        /// partition.
        /// It is not allowed to get registers of other processors or
        /// other partitions for the security and coherency reasons.
        hcl_get_vp_register,
        MSHV_IOCTL,
        MSHV_GET_VP_REGISTERS,
        mshv_vp_registers
    );

    ioctl_write_ptr!(
        /// Adds the VTL0 memory as a ZONE_DEVICE memory (I/O) to support
        /// DMA from the guest.
        hcl_add_vtl0_memory,
        MSHV_IOCTL,
        MSHV_VTL_ADD_VTL0_MEMORY,
        protocol::hcl_pfn_range_t
    );

    ioctl_write_ptr!(
        /// Sets the file to be polled while running a VP in VTL0. If the file
        /// becomes readable, then the VP run will be cancelled.
        hcl_set_poll_file,
        MSHV_IOCTL,
        MSHV_VTL_SET_POLL_FILE,
        protocol::hcl_set_poll_file
    );

    ioctl_write_ptr!(
        /// Sets up the hypercall allow map. Allowed once
        /// per fd.
        hcl_hvcall_setup,
        MSHV_IOCTL,
        MSHV_HVCALL_SETUP,
        protocol::hcl_hvcall_setup
    );

    ioctl_readwrite!(
        /// Performs a hypercall from the user mode.
        hcl_hvcall,
        MSHV_IOCTL,
        MSHV_HVCALL,
        protocol::hcl_hvcall
    );

    ioctl_write_ptr!(
        /// Executes the pvalidate instruction on a page range.
        hcl_pvalidate_pages,
        MSHV_IOCTL,
        MSHV_VTL_PVALIDATE,
        mshv_pvalidate
    );

    ioctl_write_ptr!(
        /// Executes the rmpadjust instruction on a page range.
        hcl_rmpadjust_pages,
        MSHV_IOCTL,
        MSHV_VTL_RMPADJUST,
        mshv_rmpadjust
    );

    ioctl_write_ptr!(
        /// Executes the rmpquery instruction on a page range.
        hcl_rmpquery_pages,
        MSHV_IOCTL,
        MSHV_VTL_RMPQUERY,
        mshv_rmpquery
    );

    ioctl_readwrite!(
        /// Executes a tdcall.
        hcl_tdcall,
        MSHV_IOCTL,
        MSHV_VTL_TDCALL,
        mshv_tdcall
    );

    ioctl_read!(
        hcl_read_vmx_cr4_fixed1,
        MSHV_IOCTL,
        MSHV_VTL_READ_VMX_CR4_FIXED1,
        u64
    );

    ioctl_readwrite!(
        hcl_read_guest_vsm_page_pfn,
        MSHV_IOCTL,
        MSHV_VTL_GUEST_VSM_VMSA_PFN,
        u64
    );

    pub const HCL_CAP_REGISTER_PAGE: u32 = 1;
    pub const HCL_CAP_VTL_RETURN_ACTION: u32 = 2;
    pub const HCL_CAP_DR6_SHARED: u32 = 3;

    ioctl_write_ptr!(
        /// Check for the presence of an extension capability.
        hcl_check_extension,
        MSHV_IOCTL,
        MSHV_CHECK_EXTENSION,
        u32
    );

    ioctl_read!(mshv_create_vtl, MSHV_IOCTL, MSHV_CREATE_VTL, u8);

    #[repr(C)]
    pub struct mshv_invlpgb {
        pub rax: u64,
        pub _pad0: u32,
        pub edx: u32,
        pub _pad1: u32,
        pub ecx: u32,
    }

    ioctl_write_ptr!(
        /// Issue an INVLPGB instruction.
        hcl_invlpgb,
        MSHV_IOCTL,
        MSHV_INVLPGB,
        mshv_invlpgb
    );

    ioctl_none!(
        /// Issue a TLBSYNC instruction.
        hcl_tlbsync,
        MSHV_IOCTL,
        MSHV_TLBSYNC
    );
}

/// The `/dev/mshv_vtl_low` device for accessing VTL0 memory.
pub struct MshvVtlLow {
    file: File,
}

impl MshvVtlLow {
    /// Opens the device.
    pub fn new() -> Result<Self, Error> {
        let file = fs_err::OpenOptions::new()
            .read(true)
            .write(true)
            .open("/dev/mshv_vtl_low")
            .map_err(Error::OpenGpa)?;

        Ok(Self { file: file.into() })
    }

    /// Gets the device file.
    pub fn get(&self) -> &File {
        &self.file
    }

    /// The flag to set in the file offset to map guest memory as shared instead
    /// of private.
    pub const SHARED_MEMORY_FLAG: u64 = 1 << 63;
}

/// An open `/dev/mshv` device file.
pub struct Mshv {
    file: File,
}

impl Mshv {
    /// Opens the mshv device.
    pub fn new() -> Result<Self, Error> {
        let file = fs_err::OpenOptions::new()
            .read(true)
            .write(true)
            .open("/dev/mshv")
            .map_err(Error::OpenMshv)?;

        Ok(Self { file: file.into() })
    }

    fn check_extension(&self, cap: u32) -> Result<bool, Error> {
        // SAFETY: calling IOCTL as documented, with no special requirements.
        let supported = unsafe {
            hcl_check_extension(self.file.as_raw_fd(), &cap).map_err(Error::CheckExtensions)?
        };
        Ok(supported != 0)
    }

    /// Opens an mshv_vtl device file.
    pub fn create_vtl(&self) -> Result<MshvVtl, Error> {
        let cap = &mut 0_u8;
        // SAFETY: calling IOCTL as documented, with no special requirements.
        let supported =
            unsafe { mshv_create_vtl(self.file.as_raw_fd(), cap).map_err(Error::CreateVTL)? };
        // SAFETY: calling IOCTL as documented, with no special requirements.
        let vtl_file = unsafe { File::from_raw_fd(supported) };
        Ok(MshvVtl { file: vtl_file })
    }
}

/// An open mshv_vtl device file.
#[derive(Debug)]
pub struct MshvVtl {
    file: File,
}

impl MshvVtl {
    /// Adds the VTL0 memory as a ZONE_DEVICE memory (I/O) to support DMA from the guest.
    pub fn add_vtl0_memory(&self, mem_range: MemoryRange, shared: bool) -> Result<(), Error> {
        let flags = if shared {
            MshvVtlLow::SHARED_MEMORY_FLAG / HV_PAGE_SIZE
        } else {
            0
        };
        let ram_disposition = protocol::hcl_pfn_range_t {
            start_pfn: mem_range.start_4k_gpn() | flags,
            last_pfn: mem_range.end_4k_gpn(),
        };

        // SAFETY: calling IOCTL as documented, with no special requirements.
        unsafe {
            hcl_add_vtl0_memory(self.file.as_raw_fd(), &ram_disposition)
                .map_err(Error::AddVtl0Memory)?;
        }

        Ok(())
    }
}

#[cfg(guest_arch = "x86_64")]
fn is_vtl_shared_mtrr(reg: HvX64RegisterName) -> bool {
    matches!(
        reg,
        HvX64RegisterName::MsrMtrrCap
            | HvX64RegisterName::MsrMtrrDefType
            | HvX64RegisterName::MsrMtrrPhysBase0
            | HvX64RegisterName::MsrMtrrPhysBase1
            | HvX64RegisterName::MsrMtrrPhysBase2
            | HvX64RegisterName::MsrMtrrPhysBase3
            | HvX64RegisterName::MsrMtrrPhysBase4
            | HvX64RegisterName::MsrMtrrPhysBase5
            | HvX64RegisterName::MsrMtrrPhysBase6
            | HvX64RegisterName::MsrMtrrPhysBase7
            | HvX64RegisterName::MsrMtrrPhysBase8
            | HvX64RegisterName::MsrMtrrPhysBase9
            | HvX64RegisterName::MsrMtrrPhysBaseA
            | HvX64RegisterName::MsrMtrrPhysBaseB
            | HvX64RegisterName::MsrMtrrPhysBaseC
            | HvX64RegisterName::MsrMtrrPhysBaseD
            | HvX64RegisterName::MsrMtrrPhysBaseE
            | HvX64RegisterName::MsrMtrrPhysBaseF
            | HvX64RegisterName::MsrMtrrPhysMask0
            | HvX64RegisterName::MsrMtrrPhysMask1
            | HvX64RegisterName::MsrMtrrPhysMask2
            | HvX64RegisterName::MsrMtrrPhysMask3
            | HvX64RegisterName::MsrMtrrPhysMask4
            | HvX64RegisterName::MsrMtrrPhysMask5
            | HvX64RegisterName::MsrMtrrPhysMask6
            | HvX64RegisterName::MsrMtrrPhysMask7
            | HvX64RegisterName::MsrMtrrPhysMask8
            | HvX64RegisterName::MsrMtrrPhysMask9
            | HvX64RegisterName::MsrMtrrPhysMaskA
            | HvX64RegisterName::MsrMtrrPhysMaskB
            | HvX64RegisterName::MsrMtrrPhysMaskC
            | HvX64RegisterName::MsrMtrrPhysMaskD
            | HvX64RegisterName::MsrMtrrPhysMaskE
            | HvX64RegisterName::MsrMtrrPhysMaskF
            | HvX64RegisterName::MsrMtrrFix64k00000
            | HvX64RegisterName::MsrMtrrFix16k80000
            | HvX64RegisterName::MsrMtrrFix16kA0000
            | HvX64RegisterName::MsrMtrrFix4kC0000
            | HvX64RegisterName::MsrMtrrFix4kC8000
            | HvX64RegisterName::MsrMtrrFix4kD0000
            | HvX64RegisterName::MsrMtrrFix4kD8000
            | HvX64RegisterName::MsrMtrrFix4kE0000
            | HvX64RegisterName::MsrMtrrFix4kE8000
            | HvX64RegisterName::MsrMtrrFix4kF0000
            | HvX64RegisterName::MsrMtrrFix4kF8000
    )
}

/// Indicate whether reg is shared across VTLs.
///
/// This function is not complete: DR6 may or may not be shared, depending on
/// the processor type; the caller needs to check HvRegisterVsmCapabilities.
/// Some MSRs are not included here as they are not represented in
/// HvX64RegisterName, including MSR_TSC_FREQUENCY, MSR_MCG_CAP,
/// MSR_MCG_STATUS, MSR_RESET, MSR_GUEST_IDLE, and MSR_DEBUG_DEVICE_OPTIONS.
#[cfg(guest_arch = "x86_64")]
fn is_vtl_shared_reg(reg: HvX64RegisterName) -> bool {
    is_vtl_shared_mtrr(reg)
        || matches!(
            reg,
            HvX64RegisterName::VpIndex
                | HvX64RegisterName::VpRuntime
                | HvX64RegisterName::TimeRefCount
                | HvX64RegisterName::Rax
                | HvX64RegisterName::Rbx
                | HvX64RegisterName::Rcx
                | HvX64RegisterName::Rdx
                | HvX64RegisterName::Rsi
                | HvX64RegisterName::Rdi
                | HvX64RegisterName::Rbp
                | HvX64RegisterName::Cr2
                | HvX64RegisterName::R8
                | HvX64RegisterName::R9
                | HvX64RegisterName::R10
                | HvX64RegisterName::R11
                | HvX64RegisterName::R12
                | HvX64RegisterName::R13
                | HvX64RegisterName::R14
                | HvX64RegisterName::R15
                | HvX64RegisterName::Dr0
                | HvX64RegisterName::Dr1
                | HvX64RegisterName::Dr2
                | HvX64RegisterName::Dr3
                | HvX64RegisterName::Xmm0
                | HvX64RegisterName::Xmm1
                | HvX64RegisterName::Xmm2
                | HvX64RegisterName::Xmm3
                | HvX64RegisterName::Xmm4
                | HvX64RegisterName::Xmm5
                | HvX64RegisterName::Xmm6
                | HvX64RegisterName::Xmm7
                | HvX64RegisterName::Xmm8
                | HvX64RegisterName::Xmm9
                | HvX64RegisterName::Xmm10
                | HvX64RegisterName::Xmm11
                | HvX64RegisterName::Xmm12
                | HvX64RegisterName::Xmm13
                | HvX64RegisterName::Xmm14
                | HvX64RegisterName::Xmm15
                | HvX64RegisterName::FpMmx0
                | HvX64RegisterName::FpMmx1
                | HvX64RegisterName::FpMmx2
                | HvX64RegisterName::FpMmx3
                | HvX64RegisterName::FpMmx4
                | HvX64RegisterName::FpMmx5
                | HvX64RegisterName::FpMmx6
                | HvX64RegisterName::FpMmx7
                | HvX64RegisterName::FpControlStatus
                | HvX64RegisterName::XmmControlStatus
                | HvX64RegisterName::Xfem
        )
}

/// Indicate whether reg is shared across VTLs.
#[cfg(guest_arch = "aarch64")]
fn is_vtl_shared_reg(reg: HvArm64RegisterName) -> bool {
    use hvdef::HvArm64RegisterName;

    matches!(
        reg,
        HvArm64RegisterName::X0
            | HvArm64RegisterName::X1
            | HvArm64RegisterName::X2
            | HvArm64RegisterName::X3
            | HvArm64RegisterName::X4
            | HvArm64RegisterName::X5
            | HvArm64RegisterName::X6
            | HvArm64RegisterName::X7
            | HvArm64RegisterName::X8
            | HvArm64RegisterName::X9
            | HvArm64RegisterName::X10
            | HvArm64RegisterName::X11
            | HvArm64RegisterName::X12
            | HvArm64RegisterName::X13
            | HvArm64RegisterName::X14
            | HvArm64RegisterName::X15
            | HvArm64RegisterName::X16
            | HvArm64RegisterName::X17
            | HvArm64RegisterName::X19
            | HvArm64RegisterName::X20
            | HvArm64RegisterName::X21
            | HvArm64RegisterName::X22
            | HvArm64RegisterName::X23
            | HvArm64RegisterName::X24
            | HvArm64RegisterName::X25
            | HvArm64RegisterName::X26
            | HvArm64RegisterName::X27
            | HvArm64RegisterName::X28
            | HvArm64RegisterName::XFp
            | HvArm64RegisterName::XLr
    )
}

/// The `/dev/mshv_hvcall` device for issuing hypercalls directly to the
/// hypervisor.
#[derive(Debug)]
pub struct MshvHvcall(File);

impl MshvHvcall {
    /// Opens the device.
    pub fn new() -> Result<Self, Error> {
        let file = fs_err::OpenOptions::new()
            .read(true)
            .write(true)
            .open("/dev/mshv_hvcall")
            .map_err(Error::OpenHvcall)?;

        Ok(Self(file.into()))
    }

    /// Set allowed hypercalls.
    pub fn set_allowed_hypercalls(&self, codes: &[HypercallCode]) {
        type ItemType = u64;
        let item_size_bytes = size_of::<ItemType>();
        let item_size_bits = item_size_bytes * 8;

        let mut allow_bitmap = Vec::<ItemType>::new();
        for &code in codes {
            let map_index = (code.0 as usize) / item_size_bits;
            if map_index >= allow_bitmap.len() {
                allow_bitmap.resize(map_index + 1, 0);
            }
            allow_bitmap[map_index] |= (1 as ItemType) << (code.0 % item_size_bits as u16);
        }

        let hvcall_setup = protocol::hcl_hvcall_setup {
            allow_bitmap_size: (allow_bitmap.len() * item_size_bytes) as u64,
            allow_bitmap_ptr: allow_bitmap.as_ptr(),
        };

        // SAFETY: following the IOCTL definition.
        unsafe {
            hcl_hvcall_setup(self.0.as_raw_fd(), &hvcall_setup)
                .expect("Hypercall setup IOCTL must be supported");
        }
    }

    /// Accepts VTL 0 pages with no host visibility.
    ///
    /// [`HypercallCode::HvCallAcceptGpaPages`] must be allowed.
    pub fn accept_gpa_pages(
        &self,
        range: MemoryRange,
        memory_type: hvdef::hypercall::AcceptMemoryType,
    ) -> Result<(), AcceptPagesError> {
        const MAX_INPUT_ELEMENTS: usize = (HV_PAGE_SIZE as usize
            - size_of::<hvdef::hypercall::AcceptGpaPages>())
            / size_of::<u64>();

        let span = tracing::span!(tracing::Level::INFO, "accept_pages", ?range);
        let _enter = span.enter();

        let mut current_page = range.start() / HV_PAGE_SIZE;
        let end = range.end() / HV_PAGE_SIZE;

        while current_page < end {
            let header = hvdef::hypercall::AcceptGpaPages {
                partition_id: HV_PARTITION_ID_SELF,
                page_attributes: hvdef::hypercall::AcceptPagesAttributes::new()
                    .with_memory_type(memory_type.0)
                    .with_host_visibility(HostVisibilityType::PRIVATE)
                    .with_vtl_set(0), // vtl protections cannot be applied for VTL 0 memory
                vtl_permission_set: hvdef::hypercall::VtlPermissionSet {
                    vtl_permission_from_1: [0; hvdef::hypercall::HV_VTL_PERMISSION_SET_SIZE],
                },
                gpa_page_base: current_page,
            };

            let remaining_pages = end - current_page;
            let count = remaining_pages.min(MAX_INPUT_ELEMENTS as u64);

            // SAFETY: The input header and rep slice are the correct types for
            //         this hypercall. A dummy type of u8 is provided to satisfy
            //         the compiler for input and output rep type. The given
            //         input and slices are valid references while this function
            //         is called.
            //
            //         The hypercall output is validated right after the hypercall is issued.
            let output = unsafe {
                self.hvcall_rep::<hvdef::hypercall::AcceptGpaPages, u8, u8>(
                    HypercallCode::HvCallAcceptGpaPages,
                    &header,
                    HvcallRepInput::Count(count as u16),
                    None,
                )
                .expect("kernel hypercall submission should always succeed")
            };

            output
                .result()
                .map_err(|err| AcceptPagesError::Hypervisor {
                    range: MemoryRange::from_4k_gpn_range(current_page..current_page + count),
                    output,
                    hv_error: err,
                })?;

            current_page += count;

            assert_eq!(output.elements_processed() as u64, count);
        }
        Ok(())
    }

    /// Modifies the host visibility of the given pages.
    ///
    /// [`HypercallCode::HvCallModifySparseGpaPageHostVisibility`] must be allowed.
    //
    // TODO SNP: this isn't really safe. Probably this should be an IOCTL in the
    // kernel so that it can validate the page ranges are VTL0 memory.
    pub fn modify_gpa_visibility(
        &self,
        host_visibility: HostVisibilityType,
        mut gpns: &[u64],
    ) -> Result<(), HvError> {
        const GPNS_PER_CALL: usize = (HV_PAGE_SIZE as usize
            - size_of::<hvdef::hypercall::ModifySparsePageVisibility>())
            / size_of::<u64>();

        while !gpns.is_empty() {
            let n = gpns.len().min(GPNS_PER_CALL);
            // SAFETY: The input header and rep slice are the correct types for this hypercall.
            //         The hypercall output is validated right after the hypercall is issued.
            let result = unsafe {
                self.hvcall_rep(
                    HypercallCode::HvCallModifySparseGpaPageHostVisibility,
                    &hvdef::hypercall::ModifySparsePageVisibility {
                        partition_id: HV_PARTITION_ID_SELF,
                        host_visibility: ModifyHostVisibility::new()
                            .with_host_visibility(host_visibility),
                        reserved: 0,
                    },
                    HvcallRepInput::Elements(&gpns[..n]),
                    None::<&mut [u8]>,
                )
                .unwrap()
            };

            match result.result() {
                Ok(()) => {
                    assert_eq!({ result.elements_processed() }, n);
                }
                Err(HvError::Timeout) => {}
                Err(e) => return Err(e),
            }
            gpns = &gpns[result.elements_processed()..];
        }
        Ok(())
    }

    /// Given a constructed hcl_hvcall protocol object, issues an IOCTL to invoke a hypercall via
    /// the direct hypercall kernel interface. This function will retry hypercalls if the hypervisor
    /// times out the hypercall.
    ///
    /// Input and output data are referenced as pointers in the call object.
    ///
    /// `Ok(HypercallOutput)` is returned if the kernel was successful in issuing the hypercall. A
    /// caller must check the return value for the result of the hypercall.
    ///
    /// Before invoking hypercalls, a list of hypercalls that are allowed
    /// has to be set with `Hcl::set_allowed_hypercalls`:
    /// ```ignore
    /// set_allowed_hypercalls(&[
    ///     hvdef::HypercallCode::HvCallCheckForIoIntercept,
    ///     hvdef::HypercallCode::HvCallInstallIntercept,
    /// ]);
    /// ```
    /// # Safety
    /// This function makes no guarantees that the given input header, input and output types are
    /// valid for the given hypercall. It is the caller's responsibility to use the correct types
    /// with the specified hypercall.
    ///
    /// The caller must ensure that the input and output data are valid for the lifetime of this
    /// call.
    ///
    /// A caller must check the returned [HypercallOutput] for success or failure from the
    /// hypervisor.
    ///
    /// Hardware isolated VMs cannot trust the output from the hypervisor and so it must be
    /// validated by the caller if needed.
    unsafe fn invoke_hvcall_ioctl(
        &self,
        mut call_object: protocol::hcl_hvcall,
    ) -> Result<HypercallOutput, HvcallError> {
        loop {
            // SAFETY: following the IOCTL definition. The data referenced in the call
            // lives as long as `self` does thus the lifetime elision doesn't contradict
            // the compiler's invariants.
            //
            // The hypervisor is trusted to fill out the output page with a valid
            // representation of an instance the output type, except in the case of hardware
            // isolated VMs where the caller must validate output as needed.
            unsafe {
                hcl_hvcall(self.0.as_raw_fd(), &mut call_object)
                    .map_err(HvcallError::HypercallIoctlFailed)?;
            }

            if call_object.status.call_status() == Err(HvError::Timeout).into() {
                // Any hypercall can timeout, even one that doesn't have reps. Continue processing
                // from wherever the hypervisor left off.  The rep start index isn't checked for
                // validity, since it is only being used as an input to the untrusted hypervisor.
                // This applies to both simple and rep hypercalls.
                call_object
                    .control
                    .set_rep_start(call_object.status.elements_processed());
            } else {
                if call_object.control.rep_count() == 0 {
                    // For non-rep hypercalls, the elements processed field should be 0.
                    assert_eq!(call_object.status.elements_processed(), 0);
                } else {
                    // Hardware isolated VMs cannot trust output from the hypervisor, but check for
                    // consistency between the number of elements processed and the expected count. A
                    // violation of this assertion indicates a buggy or malicious hypervisor.
                    assert!(
                        (call_object.status.result().is_ok()
                            && call_object.control.rep_count()
                                == call_object.status.elements_processed())
                            || (call_object.status.result().is_err()
                                && call_object.control.rep_count()
                                    > call_object.status.elements_processed())
                    );
                }

                return Ok(call_object.status);
            }
        }
    }

    /// Issues a non-rep hypercall to the hypervisor via the direct hypercall kernel interface.
    /// This is not intended to be used directly by external callers, rather via write safe hypercall wrappers.
    /// This call constructs the appropriate hypercall input control from the described parameters.
    ///
    /// `Ok(HypercallOutput)` is returned if the kernel was successful in issuing the hypercall. A caller must check the
    /// return value for the result of the hypercall.
    ///
    /// `code` is the hypercall code.
    /// `input` is the input type required by the hypercall.
    /// `output` is the output type required by the hypercall.
    ///
    /// Before invoking hypercalls, a list of hypercalls that are allowed
    /// has to be set with `Hcl::set_allowed_hypercalls`:
    /// ```ignore
    /// set_allowed_hypercalls(&[
    ///     hvdef::HypercallCode::HvCallCheckForIoIntercept,
    ///     hvdef::HypercallCode::HvCallInstallIntercept,
    /// ]);
    /// ```
    /// # Safety
    /// This function makes no guarantees that the given input header, input and output types are valid for the
    /// given hypercall. It is the caller's responsibility to use the correct types with the specified hypercall.
    ///
    /// A caller must check the returned [HypercallOutput] for success or failure from the hypervisor.
    ///
    /// Hardware isolated VMs cannot trust the output from the hypervisor and so it must be validated by the
    /// caller if needed.
    unsafe fn hvcall<I, O>(
        &self,
        code: HypercallCode,
        input: &I,
        output: &mut O,
    ) -> Result<HypercallOutput, HvcallError>
    where
        I: IntoBytes + Sized + Immutable + KnownLayout,
        O: IntoBytes + FromBytes + Sized + Immutable + KnownLayout,
    {
        const fn assert_size<I, O>()
        where
            I: Sized,
            O: Sized,
        {
            assert!(size_of::<I>() <= HV_PAGE_SIZE as usize);
            assert!(size_of::<O>() <= HV_PAGE_SIZE as usize);
        }
        assert_size::<I, O>();

        let control = hvdef::hypercall::Control::new().with_code(code.0);

        let call_object = protocol::hcl_hvcall {
            control,
            input_data: input.as_bytes().as_ptr().cast(),
            input_size: size_of::<I>(),
            status: FromZeros::new_zeroed(),
            output_data: output.as_bytes().as_ptr().cast(),
            output_size: size_of::<O>(),
        };

        // SAFETY: The data referenced in the call lives as long as `self` does.
        unsafe { self.invoke_hvcall_ioctl(call_object) }
    }

    /// Issues a rep hypercall to the hypervisor via the direct hypercall kernel
    /// interface. Like the non-rep version, this is not intended to be used
    /// externally other than to construct safe wrappers. This call constructs
    /// the appropriate hypercall input control from the described parameters.
    ///
    /// `Ok(HypercallOutput)` is returned if the kernel was successful in
    /// issuing the hypercall. A caller must check the return value for the
    /// result of the hypercall.
    ///
    /// `code` is the hypercall code. `input_header` is the hypercall fixed
    /// length input header. Variable length headers are not supported.
    /// `input_rep` is the list of input elements. The length of the slice is
    /// used as the rep count.
    ///
    /// `output_rep` is the optional output rep list. A caller must check the
    /// returned [HypercallOutput] for the number of valid elements in this
    /// list.
    ///
    /// # Safety
    /// This function makes no guarantees that the given input header, input rep
    /// and output rep types are valid for the given hypercall. It is the
    /// caller's responsibility to use the correct types with the specified
    /// hypercall.
    ///
    /// A caller must check the returned [HypercallOutput] for success or
    /// failure from the hypervisor and processed rep count.
    ///
    /// Hardware isolated VMs cannot trust output from the hypervisor. This
    /// routine will ensure that the hypervisor either returns success with all
    /// elements processed, or returns failure with an incomplete number of
    /// elements processed. Actual validation of the output elements is the
    /// respsonsibility of the caller.
    unsafe fn hvcall_rep<InputHeader, InputRep, O>(
        &self,
        code: HypercallCode,
        input_header: &InputHeader,
        input_rep: HvcallRepInput<'_, InputRep>,
        output_rep: Option<&mut [O]>,
    ) -> Result<HypercallOutput, HvcallError>
    where
        InputHeader: IntoBytes + Sized + Immutable + KnownLayout,
        InputRep: IntoBytes + Sized + Immutable + KnownLayout,
        O: IntoBytes + FromBytes + Sized + Immutable + KnownLayout,
    {
        // Construct input buffer.
        let (input, count) = match input_rep {
            HvcallRepInput::Elements(e) => {
                ([input_header.as_bytes(), e.as_bytes()].concat(), e.len())
            }
            HvcallRepInput::Count(c) => (input_header.as_bytes().to_vec(), c.into()),
        };

        if input.len() > HV_PAGE_SIZE as usize {
            return Err(HvcallError::InputParametersTooLarge);
        }

        if let Some(output_rep) = &output_rep {
            if output_rep.as_bytes().len() > HV_PAGE_SIZE as usize {
                return Err(HvcallError::OutputParametersTooLarge);
            }

            if count != output_rep.len() {
                return Err(HvcallError::InputOutputRepListMismatch);
            }
        }

        let (output_data, output_size) = match output_rep {
            Some(output_rep) => (
                output_rep.as_bytes().as_ptr().cast(),
                output_rep.as_bytes().len(),
            ),
            None => (std::ptr::null(), 0),
        };

        let control = hvdef::hypercall::Control::new()
            .with_code(code.0)
            .with_rep_count(count);

        let call_object = protocol::hcl_hvcall {
            control,
            input_data: input.as_ptr().cast(),
            input_size: input.len(),
            status: HypercallOutput::new(),
            output_data,
            output_size,
        };

        // SAFETY: The data referenced in the call lives as long as `self` does.
        unsafe { self.invoke_hvcall_ioctl(call_object) }
    }

    /// Issues a non-rep hypercall with variable input to the hypervisor via the direct hypercall kernel interface.
    /// This is not intended to be used directly by external callers, rather via write safe hypercall wrappers.
    /// This call constructs the appropriate hypercall input control from the described parameters.
    ///
    /// `Ok(HypercallOutput)` is returned if the kernel was successful in issuing the hypercall. A caller must check the
    /// return value for the result of the hypercall.
    ///
    /// `code` is the hypercall code.
    /// `input` is the input type required by the hypercall.
    /// `output` is the output type required by the hypercall.
    /// `variable_input` is the contents of the variable input to the hypercall. The length must be a multiple of 8 bytes.
    ///
    /// # Safety
    /// This function makes no guarantees that the given input header, input and output types are valid for the
    /// given hypercall. It is the caller's responsibility to use the correct types with the specified hypercall.
    ///
    /// A caller must check the returned [HypercallOutput] for success or failure from the hypervisor.
    ///
    /// Hardware isolated VMs cannot trust the output from the hypervisor and so it must be validated by the
    /// caller if needed.
    unsafe fn hvcall_var<I, O>(
        &self,
        code: HypercallCode,
        input: &I,
        variable_input: &[u8],
        output: &mut O,
    ) -> Result<HypercallOutput, HvcallError>
    where
        I: IntoBytes + Sized + Immutable + KnownLayout,
        O: IntoBytes + FromBytes + Sized + Immutable + KnownLayout,
    {
        const fn assert_size<I, O>()
        where
            I: Sized,
            O: Sized,
        {
            assert!(size_of::<I>() <= HV_PAGE_SIZE as usize);
            assert!(size_of::<O>() <= HV_PAGE_SIZE as usize);
        }
        assert_size::<I, O>();
        assert!(variable_input.len() % 8 == 0);

        let input = [input.as_bytes(), variable_input].concat();
        if input.len() > HV_PAGE_SIZE as usize {
            return Err(HvcallError::InputParametersTooLarge);
        }

        let control = hvdef::hypercall::Control::new()
            .with_code(code.0)
            .with_variable_header_size(variable_input.len() / 8);

        let call_object = protocol::hcl_hvcall {
            control,
            input_data: input.as_bytes().as_ptr().cast(),
            input_size: input.len(),
            status: FromZeros::new_zeroed(),
            output_data: output.as_bytes().as_ptr().cast(),
            output_size: size_of::<O>(),
        };

        // SAFETY: The data referenced in the call lives as long as `self` does.
        unsafe { self.invoke_hvcall_ioctl(call_object) }
    }

    /// Sets the VTL protection mask for the specified memory range.
    ///
    /// [`HypercallCode::HvCallModifyVtlProtectionMask`] must be allowed.
    pub fn modify_vtl_protection_mask(
        &self,
        range: MemoryRange,
        map_flags: HvMapGpaFlags,
        target_vtl: HvInputVtl,
    ) -> Result<(), ApplyVtlProtectionsError> {
        let header = hvdef::hypercall::ModifyVtlProtectionMask {
            partition_id: HV_PARTITION_ID_SELF,
            map_flags,
            target_vtl,
            reserved: [0; 3],
        };

        const MAX_INPUT_ELEMENTS: usize = (HV_PAGE_SIZE as usize
            - size_of::<hvdef::hypercall::ModifyVtlProtectionMask>())
            / size_of::<u64>();

        let span = tracing::span!(tracing::Level::INFO, "modify_vtl_protection_mask", ?range);
        let _enter = span.enter();

        let start = range.start() / HV_PAGE_SIZE;
        let end = range.end() / HV_PAGE_SIZE;

        // Reuse the same vector for every hypercall.
        let mut pages = Vec::new();
        for current_page in (start..end).step_by(MAX_INPUT_ELEMENTS) {
            let remaining_pages = end - current_page;
            let count = remaining_pages.min(MAX_INPUT_ELEMENTS as u64);
            pages.clear();
            pages.extend(current_page..current_page + count);

            // SAFETY: The input header and rep slice are the correct types for this hypercall. A dummy type of u8 is
            //         provided to satisfy the compiler for output rep type. The given input and slices are valid
            //         references while this function is called.
            //
            //         The hypercall output is validated right after the hypercall is issued.
            let output = unsafe {
                self.hvcall_rep::<hvdef::hypercall::ModifyVtlProtectionMask, u64, u8>(
                    HypercallCode::HvCallModifyVtlProtectionMask,
                    &header,
                    HvcallRepInput::Elements(pages.as_slice()),
                    None,
                )
                .expect("kernel hypercall submission should always succeed")
            };

            output.result().map_err(|err| {
                let page_range =
                    *pages.first().expect("not empty")..*pages.last().expect("not empty") + 1;
                ApplyVtlProtectionsError::Hypervisor {
                    range: MemoryRange::from_4k_gpn_range(page_range),
                    output,
                    hv_error: err,
                    vtl: target_vtl,
                }
            })?;

            assert_eq!(output.elements_processed() as u64, count);
        }

        Ok(())
    }

    /// Get a single VP register for the given VTL via hypercall.
    fn get_vp_register_for_vtl_inner(
        &self,
        target_vtl: HvInputVtl,
        name: HvRegisterName,
    ) -> Result<HvRegisterValue, Error> {
        let header = hvdef::hypercall::GetSetVpRegisters {
            partition_id: HV_PARTITION_ID_SELF,
            vp_index: HV_VP_INDEX_SELF,
            target_vtl,
            rsvd: [0; 3],
        };
        let mut output = [HvRegisterValue::new_zeroed()];

        // SAFETY: The input header and rep slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.hvcall_rep(
                HypercallCode::HvCallGetVpRegisters,
                &header,
                HvcallRepInput::Elements(&[name]),
                Some(&mut output),
            )
            .expect("get_vp_register hypercall should not fail")
        };

        // Status must be success with 1 rep completed
        status
            .result()
            .map_err(|err| Error::GetVpRegisterHypercall {
                reg: name.into(),
                err,
            })?;
        assert_eq!(status.elements_processed(), 1);

        Ok(output[0])
    }

    /// Get a single VP register for the given VTL via hypercall. Only a select
    /// set of registers are supported; others will cause a panic.
    #[cfg(guest_arch = "x86_64")]
    pub fn get_vp_register_for_vtl(
        &self,
        vtl: HvInputVtl,
        name: HvX64RegisterName,
    ) -> Result<HvRegisterValue, Error> {
        match vtl.target_vtl().unwrap() {
            None | Some(Vtl::Vtl2) => {
                assert!(matches!(
                    name,
                    HvX64RegisterName::GuestVsmPartitionConfig
                        | HvX64RegisterName::VsmPartitionConfig
                        | HvX64RegisterName::VsmPartitionStatus
                        | HvX64RegisterName::VsmCapabilities
                        | HvX64RegisterName::TimeRefCount
                        | HvX64RegisterName::VsmVpSecureConfigVtl0
                        | HvX64RegisterName::VsmVpSecureConfigVtl1
                ));
            }
            Some(Vtl::Vtl1) => {
                todo!("TODO: allowed registers for VTL1");
            }
            Some(Vtl::Vtl0) => {
                // Only VTL-private registers can go through this path.
                // VTL-shared registers have to go through the kernel (either
                // via the CPU context page or via the dedicated ioctl), as
                // they may require special handling there.
                //
                // Register access should go through the register page if
                // possible (as a performance optimization). In practice,
                // registers that are normally available on the register page
                // are handled here only when it is unavailable (e.g., running
                // in WHP).
                assert!(!is_vtl_shared_reg(name));
            }
        }

        self.get_vp_register_for_vtl_inner(vtl, name.into())
    }

    /// Get a single VP register for the given VTL via hypercall. Only a select
    /// set of registers are supported; others will cause a panic.
    #[cfg(guest_arch = "aarch64")]
    pub fn get_vp_register_for_vtl(
        &self,
        vtl: HvInputVtl,
        name: HvArm64RegisterName,
    ) -> Result<HvRegisterValue, Error> {
        match vtl.target_vtl().unwrap() {
            None | Some(Vtl::Vtl2) => {
                assert!(matches!(
                    name,
                    HvArm64RegisterName::GuestVsmPartitionConfig
                        | HvArm64RegisterName::VsmPartitionConfig
                        | HvArm64RegisterName::VsmPartitionStatus
                        | HvArm64RegisterName::VsmCapabilities
                        | HvArm64RegisterName::TimeRefCount
                        | HvArm64RegisterName::VsmVpSecureConfigVtl0
                        | HvArm64RegisterName::VsmVpSecureConfigVtl1
                        | HvArm64RegisterName::PrivilegesAndFeaturesInfo
                ));
            }
            Some(Vtl::Vtl1) => {
                // TODO: allowed registers for VTL1
                todo!();
            }
            Some(Vtl::Vtl0) => {
                // Only VTL-private registers can go through this path.
                // VTL-shared registers have to go through the kernel (either
                // via the CPU context page or via the dedicated ioctl), as
                // they may require special handling there.
                assert!(!is_vtl_shared_reg(name));
            }
        }

        self.get_vp_register_for_vtl_inner(vtl, name.into())
    }
}

/// The HCL device and collection of fds.
#[derive(Debug)]
pub struct Hcl {
    mshv_hvcall: MshvHvcall,
    mshv_vtl: MshvVtl,
    vps: Vec<HclVp>,
    supports_vtl_ret_action: bool,
    supports_register_page: bool,
    dr6_shared: bool,
    isolation: IsolationType,
    snp_register_bitmap: [u8; 64],
    sidecar: Option<SidecarClient>,
}

/// The isolation type for a partition.
// TODO: Add guest_arch cfgs.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum IsolationType {
    /// No isolation.
    None,
    /// Hyper-V software isolation.
    Vbs,
    /// AMD SNP.
    Snp,
    /// Intel TDX.
    Tdx,
}

impl IsolationType {
    /// Returns true if the isolation type is not `None`.
    pub fn is_isolated(&self) -> bool {
        !matches!(self, Self::None)
    }

    /// Returns whether the isolation type is hardware-backed.
    pub fn is_hardware_isolated(&self) -> bool {
        matches!(self, Self::Snp | Self::Tdx)
    }
}

impl Hcl {
    /// Returns true if DR6 is a shared register on this processor.
    pub fn dr6_shared(&self) -> bool {
        self.dr6_shared
    }
}

#[derive(Debug)]
struct HclVp {
    state: Mutex<VpState>,
    run: MappedPage<hcl_run>,
    backing: BackingState,
}

#[derive(Debug)]
enum BackingState {
    Mshv {
        reg_page: Option<MappedPage<HvX64RegisterPage>>,
    },
    Snp {
        vmsa: VtlArray<MappedPage<SevVmsa>, 2>,
    },
    Tdx {
        vtl0_apic_page: MappedPage<ApicPage>,
        vtl1_apic_page: MemoryBlock,
    },
}

#[derive(Debug)]
enum VpState {
    Running(Pthread),
    NotRunning,
}

impl HclVp {
    fn new(
        hcl: &Hcl,
        vp: u32,
        map_reg_page: bool,
        isolation_type: IsolationType,
        private_dma_client: Option<&Arc<dyn DmaClient>>,
    ) -> Result<Self, Error> {
        let fd = &hcl.mshv_vtl.file;
        let run: MappedPage<hcl_run> =
            MappedPage::new(fd, vp as i64).map_err(|e| Error::MmapVp(e, None))?;
        // Block proxied interrupts on all vectors by default. The mask will be
        // relaxed as the guest runs.
        //
        // This is only used on CVMs. Skip it otherwise, since run page accesses
        // will fault on VPs that are still in the sidecar kernel.
        if isolation_type.is_hardware_isolated() {
            // SAFETY: `proxy_irr_blocked` is not accessed by any other VPs/kernel at this point (`HclVp` creation)
            // so we know we have exclusive access.
            let proxy_irr_blocked = unsafe { &mut (*run.as_ptr()).proxy_irr_blocked };
            proxy_irr_blocked.fill(!0);
        }

        let backing = match isolation_type {
            IsolationType::None | IsolationType::Vbs => BackingState::Mshv {
                reg_page: if map_reg_page {
                    Some(
                        MappedPage::new(fd, HCL_REG_PAGE_OFFSET | vp as i64)
                            .map_err(Error::MmapRegPage)?,
                    )
                } else {
                    None
                },
            },
            IsolationType::Snp => {
                let vmsa_vtl0 = MappedPage::new(fd, HCL_VMSA_PAGE_OFFSET | vp as i64)
                    .map_err(|e| Error::MmapVp(e, Some(Vtl::Vtl0)))?;
                let vmsa_vtl1 = MappedPage::new(fd, HCL_VMSA_GUEST_VSM_PAGE_OFFSET | vp as i64)
                    .map_err(|e| Error::MmapVp(e, Some(Vtl::Vtl1)))?;
                BackingState::Snp {
                    vmsa: [vmsa_vtl0, vmsa_vtl1].into(),
                }
            }
            IsolationType::Tdx => BackingState::Tdx {
                vtl0_apic_page: MappedPage::new(fd, MSHV_APIC_PAGE_OFFSET | vp as i64)
                    .map_err(|e| Error::MmapVp(e, Some(Vtl::Vtl0)))?,
                vtl1_apic_page: private_dma_client
                    .ok_or(Error::MissingPrivateMemory)?
                    .allocate_dma_buffer(HV_PAGE_SIZE as usize)
                    .map_err(Error::AllocVp)?,
            },
        };

        Ok(Self {
            state: Mutex::new(VpState::NotRunning),
            run,
            backing,
        })
    }
}

/// Object used to run and to access state for a specific VP.
pub struct ProcessorRunner<'a, T: Backing<'a>> {
    hcl: &'a Hcl,
    vp: &'a HclVp,
    sidecar: Option<SidecarVp<'a>>,
    deferred_actions: Option<RegisteredDeferredActions<'a>>,
    run: &'a UnsafeCell<hcl_run>,
    intercept_message: &'a UnsafeCell<HvMessage>,
    state: T,
}

/// An error returned by [`Hcl::runner`].
#[derive(Debug, Error)]
pub enum NoRunner {
    /// The partition is for a different isolation type.
    #[error("mismatched isolation type")]
    MismatchedIsolation,
    /// A sidecar VP was requested, but no sidecar was provided.
    #[error("missing sidecar")]
    MissingSidecar,
    /// The sidecar VP could not be contacted.
    #[error("sidecar communication error")]
    Sidecar(#[source] sidecar_client::SidecarError),
}

/// An isolation-type-specific backing for a processor runner.
#[expect(private_bounds)]
pub trait Backing<'a>: BackingPrivate<'a> {}

impl<'a, T: BackingPrivate<'a>> Backing<'a> for T {}

mod private {
    use super::Error;
    use super::Hcl;
    use super::HclVp;
    use super::NoRunner;
    use super::ProcessorRunner;
    use crate::GuestVtl;
    use hvdef::HvRegisterName;
    use hvdef::HvRegisterValue;
    use sidecar_client::SidecarVp;

    pub(super) trait BackingPrivate<'a>: Sized {
        fn new(vp: &'a HclVp, sidecar: Option<&SidecarVp<'a>>, hcl: &Hcl)
        -> Result<Self, NoRunner>;

        fn try_set_reg(
            runner: &mut ProcessorRunner<'a, Self>,
            vtl: GuestVtl,
            name: HvRegisterName,
            value: HvRegisterValue,
        ) -> Result<bool, Error>;

        fn must_flush_regs_on(runner: &ProcessorRunner<'a, Self>, name: HvRegisterName) -> bool;

        fn try_get_reg(
            runner: &ProcessorRunner<'a, Self>,
            vtl: GuestVtl,
            name: HvRegisterName,
        ) -> Result<Option<HvRegisterValue>, Error>;

        fn flush_register_page(runner: &mut ProcessorRunner<'a, Self>);
    }
}

impl<'a, T: Backing<'a>> Drop for ProcessorRunner<'a, T> {
    fn drop(&mut self) {
        self.flush_deferred_state();
        drop(self.deferred_actions.take());
        let old_state = std::mem::replace(&mut *self.vp.state.lock(), VpState::NotRunning);
        assert!(matches!(old_state, VpState::Running(thread) if thread == Pthread::current()));
    }
}

impl<'a, T: Backing<'a>> ProcessorRunner<'a, T> {
    /// Flushes any deferred state. Must be called if preparing the partition
    /// for save/restore (servicing).
    pub fn flush_deferred_state(&mut self) {
        T::flush_register_page(self);
        if let Some(actions) = &mut self.deferred_actions {
            actions.flush();
        }
    }
}

impl<'a, T: Backing<'a>> ProcessorRunner<'a, T> {
    // Registers that are shared between VTLs need to be handled by the kernel
    // as they may require special handling there. set_reg and get_reg will
    // handle these registers using a dedicated ioctl, instead of the general-
    // purpose Set/GetVpRegisters hypercalls.
    #[cfg(guest_arch = "x86_64")]
    fn is_kernel_managed(&self, name: HvX64RegisterName) -> bool {
        if name == HvX64RegisterName::Dr6 {
            self.hcl.dr6_shared()
        } else {
            is_vtl_shared_reg(name)
        }
    }

    #[cfg(guest_arch = "aarch64")]
    fn is_kernel_managed(&self, name: HvArm64RegisterName) -> bool {
        is_vtl_shared_reg(name)
    }

    fn set_reg(&mut self, vtl: GuestVtl, regs: &[HvRegisterAssoc]) -> Result<(), Error> {
        if regs.is_empty() {
            return Ok(());
        }

        if let Some(sidecar) = &mut self.sidecar {
            sidecar
                .set_vp_registers(vtl.into(), regs)
                .map_err(Error::Sidecar)?;
        } else {
            // TODO: group up to MSHV_VP_MAX_REGISTERS regs. The kernel
            // currently has a bug where it only supports one register at a
            // time. Once that's fixed, this code could set a group of
            // registers in one ioctl.
            for reg in regs {
                let hc_regs = &mut [HvRegisterAssoc {
                    name: reg.name,
                    pad: [0; 3],
                    value: reg.value,
                }];

                if self.is_kernel_managed(reg.name.into()) {
                    let hv_vp_register_args = mshv_vp_registers {
                        count: 1,
                        regs: hc_regs.as_mut_ptr(),
                    };
                    // SAFETY: ioctl call with correct types.
                    unsafe {
                        hcl_set_vp_register(
                            self.hcl.mshv_vtl.file.as_raw_fd(),
                            &hv_vp_register_args,
                        )
                        .map_err(Error::SetVpRegister)?;
                    }
                } else {
                    let hc_regs = [HvRegisterAssoc {
                        name: reg.name,
                        pad: [0; 3],
                        value: reg.value,
                    }];
                    self.set_vp_registers_hvcall_inner(vtl.into(), &hc_regs)
                        .map_err(Error::SetRegisters)?;
                }
            }
        }
        Ok(())
    }

    fn get_reg(&mut self, vtl: GuestVtl, regs: &mut [HvRegisterAssoc]) -> Result<(), Error> {
        if regs.is_empty() {
            return Ok(());
        }

        if let Some(sidecar) = &mut self.sidecar {
            sidecar
                .get_vp_registers(vtl.into(), regs)
                .map_err(Error::Sidecar)?;
        } else {
            // TODO: group up to MSHV_VP_MAX_REGISTERS regs. The kernel
            // currently has a bug where it only supports one register at a
            // time. Once that's fixed, this code could set a group of
            // registers in one ioctl.
            for reg in regs {
                if self.is_kernel_managed(reg.name.into()) {
                    let mut mshv_vp_register_args = mshv_vp_registers {
                        count: 1,
                        regs: reg,
                    };
                    // SAFETY: we know that our file is a vCPU fd, we know the kernel will only read the
                    // correct amount of memory from our pointer, and we verify the return result.
                    unsafe {
                        hcl_get_vp_register(
                            self.hcl.mshv_vtl.file.as_raw_fd(),
                            &mut mshv_vp_register_args,
                        )
                        .map_err(Error::GetVpRegister)?;
                    }
                } else {
                    reg.value = self
                        .hcl
                        .mshv_hvcall
                        .get_vp_register_for_vtl(vtl.into(), reg.name.into())?;
                }
            }
        }
        Ok(())
    }

    /// Clears the cancel flag so that the VP can be run again.
    pub fn clear_cancel(&mut self) {
        if !self.is_sidecar() {
            // SAFETY: self.run is mapped, and the cancel field is atomically
            // accessed by everyone.
            let cancel = unsafe { &*(&raw mut (*self.run.get()).cancel).cast::<AtomicU32>() };
            cancel.store(0, Ordering::SeqCst);
        }
    }

    /// Set the halted state of the VP. If `true`, then `run()` will not
    /// actually run the VP but will just wait for a cancel request or signal.
    pub fn set_halted(&mut self, halted: bool) {
        // SAFETY: the `flags` field of the run page will not be concurrently
        // updated.
        let flags = unsafe { &mut (*self.run.get()).flags };
        if halted {
            *flags |= protocol::MSHV_VTL_RUN_FLAG_HALTED
        } else {
            *flags &= !protocol::MSHV_VTL_RUN_FLAG_HALTED
        }
    }

    /// Gets the proxied interrupt request bitmap for VTL 0 from the hypervisor.
    pub fn proxy_irr_vtl0(&mut self) -> Option<[u32; 8]> {
        // SAFETY: the `scan_proxy_irr` and `proxy_irr` fields of the run page
        // are concurrently updated by the kernel on multiple processors. They
        // are accessed atomically everywhere.
        unsafe {
            let scan_proxy_irr = &*((&raw mut (*self.run.get()).scan_proxy_irr).cast::<AtomicU8>());
            let proxy_irr = &*((&raw mut (*self.run.get()).proxy_irr).cast::<[AtomicU32; 8]>());
            if scan_proxy_irr.load(Ordering::Acquire) == 0 {
                return None;
            }

            scan_proxy_irr.store(0, Ordering::SeqCst);
            let mut r = [0; 8];
            for (irr, r) in proxy_irr.iter().zip(r.iter_mut()) {
                if irr.load(Ordering::Relaxed) != 0 {
                    *r = irr.swap(0, Ordering::Relaxed);
                }
            }
            Some(r)
        }
    }

    /// Update the `proxy_irr_blocked` for VTL 0 in the run page
    pub fn update_proxy_irr_filter_vtl0(&mut self, irr_filter: &[u32; 8]) {
        // SAFETY: `proxy_irr_blocked` is accessed by current VP only, but could
        // be concurrently accessed by kernel too, hence accessing as Atomic
        let proxy_irr_blocked = unsafe {
            &mut *((&raw mut (*self.run.get()).proxy_irr_blocked).cast::<[AtomicU32; 8]>())
        };

        // `irr_filter` bitmap has bits set for all allowed vectors (i.e. SINT and device interrupts)
        // Replace current `proxy_irr_blocked` with the given `irr_filter` bitmap.
        // By default block all (i.e. set all), and only allow (unset) given vectors from `irr_filter`.
        for (filter, irr) in proxy_irr_blocked.iter_mut().zip(irr_filter.iter()) {
            filter.store(!irr, Ordering::Relaxed);
            tracing::debug!(irr, "update_proxy_irr_filter");
        }
    }

    /// Gets the proxy_irr_exit bitmask for VTL 0. This mask ensures that
    /// the masked interrupts always exit to user-space, and cannot
    /// be injected in the kernel. Interrupts matching this condition
    /// will be left on the proxy_irr field.
    pub fn proxy_irr_exit_mut_vtl0(&mut self) -> &mut [u32; 8] {
        // SAFETY: The `proxy_irr_exit` field of the run page will not be concurrently updated.
        unsafe { &mut (*self.run.get()).proxy_irr_exit }
    }

    /// Gets the current offload_flags from the run page.
    pub fn offload_flags_mut(&mut self) -> &mut hcl_intr_offload_flags {
        // SAFETY: The `offload_flags` field of the run page will not be concurrently updated.
        unsafe { &mut (*self.run.get()).offload_flags }
    }

    /// Runs the VP via the sidecar kernel.
    pub fn run_sidecar(&mut self) -> Result<SidecarRun<'_, 'a>, Error> {
        self.sidecar.as_mut().unwrap().run().map_err(Error::Sidecar)
    }

    /// Run the following VP until an exit, error, or interrupt (cancel or
    /// signal) occurs.
    ///
    /// Returns `Ok(true)` if there is an exit to process, `Ok(false)` if there
    /// was a signal or cancel request.
    pub fn run(&mut self) -> Result<bool, Error> {
        assert!(self.sidecar.is_none());
        // Apply any deferred actions to the run page.
        if let Some(actions) = &mut self.deferred_actions {
            debug_assert!(self.hcl.supports_vtl_ret_action);
            // SAFETY: there are no concurrent accesses to the deferred action
            // slots.
            let mut slots = unsafe { DeferredActionSlots::new(self.run) };
            actions.move_to_slots(&mut slots);
        };

        // N.B. cpu_context and exit_context are mutated by this call.
        //
        // SAFETY: no safety requirements for this ioctl.
        let r = unsafe { hcl_return_to_lower_vtl(self.hcl.mshv_vtl.file.as_raw_fd()) };

        let has_intercept = match r {
            Ok(_) => true,
            Err(nix::errno::Errno::EINTR) => false,
            Err(err) => return Err(Error::ReturnToLowerVtl(err)),
        };
        Ok(has_intercept)
    }

    /// Gets a reference to enter mode value, used by the kernel to specify the
    /// mode used when entering a lower VTL.
    pub fn enter_mode(&mut self) -> Option<&mut EnterModes> {
        if self.sidecar.is_some() {
            None
        } else {
            // SAFETY: self.run is mapped, and the mode field can only be mutated or accessed by
            // this object (or the kernel while `run` is called).
            Some(unsafe { &mut (*self.run.get()).mode })
        }
    }

    /// Returns a reference to the exit message from the last exit.
    pub fn exit_message(&self) -> &HvMessage {
        // SAFETY: the exit message will not be concurrently accessed by the
        // kernel while this VP is in VTL2.
        unsafe { &*self.intercept_message.get() }
    }

    /// Returns whether this is a sidecar VP.
    pub fn is_sidecar(&self) -> bool {
        self.sidecar.is_some()
    }
}

impl<'a, T: Backing<'a>> ProcessorRunner<'a, T> {
    fn get_vp_registers_inner<R: Copy + Into<HvRegisterName>>(
        &mut self,
        vtl: GuestVtl,
        names: &[R],
        values: &mut [HvRegisterValue],
    ) -> Result<(), Error> {
        assert_eq!(names.len(), values.len());
        let mut assoc = Vec::new();
        let mut offset = Vec::new();
        for (i, (&name, value)) in names.iter().zip(values.iter_mut()).enumerate() {
            if let Some(v) = T::try_get_reg(self, vtl, name.into())? {
                *value = v;
            } else {
                assoc.push(HvRegisterAssoc {
                    name: name.into(),
                    pad: Default::default(),
                    value: FromZeros::new_zeroed(),
                });
                offset.push(i);
            }
        }

        self.get_reg(vtl, &mut assoc)?;
        for (&i, assoc) in offset.iter().zip(&assoc) {
            values[i] = assoc.value;
        }
        Ok(())
    }

    /// Get the following register on the current VP.
    ///
    /// This will fail for registers that are in the mmapped CPU context, i.e.
    /// registers that are shared between VTL0 and VTL2.
    pub fn get_vp_register(
        &mut self,
        vtl: GuestVtl,
        #[cfg(guest_arch = "x86_64")] name: HvX64RegisterName,
        #[cfg(guest_arch = "aarch64")] name: HvArm64RegisterName,
    ) -> Result<HvRegisterValue, Error> {
        let mut value = [0u64.into(); 1];
        self.get_vp_registers_inner(vtl, &[name], &mut value)?;
        Ok(value[0])
    }

    /// Get the following VP registers on the current VP.
    ///
    /// # Panics
    /// Panics if `names.len() != values.len()`.
    pub fn get_vp_registers(
        &mut self,
        vtl: GuestVtl,
        #[cfg(guest_arch = "x86_64")] names: &[HvX64RegisterName],
        #[cfg(guest_arch = "aarch64")] names: &[HvArm64RegisterName],
        values: &mut [HvRegisterValue],
    ) -> Result<(), Error> {
        self.get_vp_registers_inner(vtl, names, values)
    }

    /// Set the following register on the current VP.
    ///
    /// This will fail for registers that are in the mmapped CPU context, i.e.
    /// registers that are shared between VTL0 and VTL2.
    pub fn set_vp_register(
        &mut self,
        vtl: GuestVtl,
        #[cfg(guest_arch = "x86_64")] name: HvX64RegisterName,
        #[cfg(guest_arch = "aarch64")] name: HvArm64RegisterName,
        value: HvRegisterValue,
    ) -> Result<(), Error> {
        self.set_vp_registers(vtl, [(name, value)])
    }

    /// Sets a set of VP registers.
    pub fn set_vp_registers<I>(&mut self, vtl: GuestVtl, values: I) -> Result<(), Error>
    where
        I: IntoIterator,
        I::Item: Into<HvRegisterAssoc> + Clone,
    {
        let mut assoc = Vec::new();
        for HvRegisterAssoc { name, value, .. } in values.into_iter().map(Into::into) {
            if !assoc.is_empty() && T::must_flush_regs_on(self, name) {
                self.set_reg(vtl, &assoc)?;
                assoc.clear();
            }
            if !T::try_set_reg(self, vtl, name, value)? {
                assoc.push(HvRegisterAssoc {
                    name,
                    pad: Default::default(),
                    value,
                });
            }
        }
        if !assoc.is_empty() {
            self.set_reg(vtl, &assoc)?;
        }
        Ok(())
    }

    fn set_vp_registers_hvcall_inner(
        &mut self,
        vtl: Vtl,
        registers: &[HvRegisterAssoc],
    ) -> Result<(), HvError> {
        let header = hvdef::hypercall::GetSetVpRegisters {
            partition_id: HV_PARTITION_ID_SELF,
            vp_index: HV_VP_INDEX_SELF,
            target_vtl: vtl.into(),
            rsvd: [0; 3],
        };

        tracing::trace!(?registers, "HvCallSetVpRegisters rep");

        // SAFETY: The input header and rep slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.hcl
                .mshv_hvcall
                .hvcall_rep::<hvdef::hypercall::GetSetVpRegisters, HvRegisterAssoc, u8>(
                    HypercallCode::HvCallSetVpRegisters,
                    &header,
                    HvcallRepInput::Elements(registers),
                    None,
                )
                .expect("set_vp_registers hypercall should not fail")
        };

        // Status must be success
        status.result()?;
        Ok(())
    }

    /// Sets the following registers on the current VP and given VTL using a
    /// direct hypercall.
    ///
    /// This should not be used on the fast path. Therefore only a select set of
    /// registers are supported, and others will cause a panic.
    ///
    /// This function can be used with VTL2 as a target.
    pub fn set_vp_registers_hvcall<I>(&mut self, vtl: Vtl, values: I) -> Result<(), HvError>
    where
        I: IntoIterator,
        I::Item: Into<HvRegisterAssoc> + Clone,
    {
        let registers: Vec<HvRegisterAssoc> = values.into_iter().map(Into::into).collect();

        assert!(registers.iter().all(
            |HvRegisterAssoc {
                 name,
                 pad: _,
                 value: _,
             }| matches!(
                (*name).into(),
                HvX64RegisterName::PendingEvent0
                    | HvX64RegisterName::PendingEvent1
                    | HvX64RegisterName::Sipp
                    | HvX64RegisterName::Sifp
                    | HvX64RegisterName::Ghcb
                    | HvX64RegisterName::VsmPartitionConfig
                    | HvX64RegisterName::VsmVpWaitForTlbLock
                    | HvX64RegisterName::VsmVpSecureConfigVtl0
                    | HvX64RegisterName::VsmVpSecureConfigVtl1
            )
        ));
        self.set_vp_registers_hvcall_inner(vtl, &registers)
    }

    /// Sets the VTL that should be returned to when underhill exits
    pub fn set_exit_vtl(&mut self, vtl: GuestVtl) {
        // SAFETY: self.run is mapped, and the target_vtl field can only be
        // mutated or accessed by this object and only before the kernel is
        // invoked during `run`
        unsafe { (*self.run.get()).target_vtl = vtl.into() }
    }
}

impl Hcl {
    /// Returns a new HCL instance.
    pub fn new(isolation: IsolationType, sidecar: Option<SidecarClient>) -> Result<Hcl, Error> {
        static SIGNAL_HANDLER_INIT: Once = Once::new();
        // SAFETY: The signal handler does not perform any actions that are forbidden
        // for signal handlers to perform, as it performs nothing.
        SIGNAL_HANDLER_INIT.call_once(|| unsafe {
            signal_hook::low_level::register(libc::SIGRTMIN(), || {
                // Do nothing, the ioctl will now return with EINTR.
            })
            .unwrap();
        });

        // Open both mshv fds
        let mshv_fd = Mshv::new()?;

        // Validate the hypervisor's advertised isolation type matches the
        // requested isolation type. In CVM scenarios, this is not trusted, so
        // we still need the isolation type from the caller.
        //
        // FUTURE: the kernel driver should probably tell us this, especially
        // since the kernel ABI is different for different isolation types.
        let supported_isolation = if cfg!(guest_arch = "x86_64") {
            // xtask-fmt allow-target-arch cpu-intrinsic
            #[cfg(target_arch = "x86_64")]
            {
                let result = safe_intrinsics::cpuid(
                    hvdef::HV_CPUID_FUNCTION_MS_HV_ISOLATION_CONFIGURATION,
                    0,
                );
                match result.ebx & 0xF {
                    0 => IsolationType::None,
                    1 => IsolationType::Vbs,
                    2 => IsolationType::Snp,
                    3 => IsolationType::Tdx,
                    ty => panic!("unknown isolation type {ty:#x}"),
                }
            }
            // xtask-fmt allow-target-arch cpu-intrinsic
            #[cfg(not(target_arch = "x86_64"))]
            {
                unreachable!()
            }
        } else {
            IsolationType::None
        };

        if isolation != supported_isolation {
            return Err(Error::MismatchedIsolation {
                supported: supported_isolation,
                requested: isolation,
            });
        }

        let supports_vtl_ret_action = mshv_fd.check_extension(HCL_CAP_VTL_RETURN_ACTION)?;
        let supports_register_page = mshv_fd.check_extension(HCL_CAP_REGISTER_PAGE)?;
        let dr6_shared = mshv_fd.check_extension(HCL_CAP_DR6_SHARED)?;
        tracing::debug!(
            supports_vtl_ret_action,
            supports_register_page,
            "HCL capabilities",
        );

        let vtl_fd = mshv_fd.create_vtl()?;

        // Open the hypercall pseudo-device
        let mshv_hvcall = MshvHvcall::new()?;

        // Override certain features for hardware isolated VMs.
        // TODO: vtl return actions are inhibited for hardware isolated VMs because they currently
        // are a pessimization since interrupt handling (and synic handling) are all done from
        // within VTL2. Future vtl return actions may be different, requiring granular handling.
        let supports_vtl_ret_action = supports_vtl_ret_action && !isolation.is_hardware_isolated();
        let supports_register_page = supports_register_page && !isolation.is_hardware_isolated();
        let snp_register_bitmap = [0u8; 64];

        Ok(Hcl {
            mshv_hvcall,
            mshv_vtl: vtl_fd,
            vps: Vec::new(),
            supports_vtl_ret_action,
            supports_register_page,
            dr6_shared,
            isolation,
            snp_register_bitmap,
            sidecar,
        })
    }

    /// Set allowed hypercalls.
    pub fn set_allowed_hypercalls(&self, codes: &[HypercallCode]) {
        self.mshv_hvcall.set_allowed_hypercalls(codes)
    }

    /// Initializes SNP register tweak bitmap
    pub fn set_snp_register_bitmap(&mut self, register_bitmap: [u8; 64]) {
        self.snp_register_bitmap = register_bitmap;
    }

    /// Adds `vp_count` VPs.
    pub fn add_vps(
        &mut self,
        vp_count: u32,
        private_pool: Option<&Arc<dyn DmaClient>>,
    ) -> Result<(), Error> {
        self.vps = (0..vp_count)
            .map(|vp| {
                HclVp::new(
                    self,
                    vp,
                    self.supports_register_page,
                    self.isolation,
                    private_pool,
                )
            })
            .collect::<Result<_, _>>()?;

        Ok(())
    }

    /// Registers with the hypervisor for an intercept.
    pub fn register_intercept(
        &self,
        intercept_type: HvInterceptType,
        access_type_mask: u32,
        intercept_parameters: HvInterceptParameters,
    ) -> Result<(), HvError> {
        let intercept_info = hvdef::hypercall::InstallIntercept {
            partition_id: HV_PARTITION_ID_SELF,
            access_type_mask,
            intercept_type,
            intercept_parameters,
        };

        // SAFETY: calling hypercall with appropriate input and output.
        unsafe {
            self.mshv_hvcall
                .hvcall(
                    HypercallCode::HvCallInstallIntercept,
                    &intercept_info,
                    &mut (),
                )
                .unwrap()
                .result()
        }
    }

    /// Returns the base CPU that manages the given sidecar VP.
    pub fn sidecar_base_cpu(&self, vp_index: u32) -> Option<u32> {
        Some(self.sidecar.as_ref()?.base_cpu(vp_index))
    }

    /// Create a VP runner for the given partition.
    pub fn runner<'a, T: Backing<'a>>(
        &'a self,
        vp_index: u32,
        use_sidecar: bool,
    ) -> Result<ProcessorRunner<'a, T>, NoRunner> {
        let vp = &self.vps[vp_index as usize];

        let sidecar = if use_sidecar {
            Some(
                self.sidecar
                    .as_ref()
                    .ok_or(NoRunner::MissingSidecar)?
                    .vp(vp_index),
            )
        } else {
            None
        };

        let state = T::new(vp, sidecar.as_ref(), self)?;

        // Set this thread as the runner.
        let VpState::NotRunning =
            std::mem::replace(&mut *vp.state.lock(), VpState::Running(Pthread::current()))
        else {
            panic!("another runner already exists")
        };

        let actions = if sidecar.is_none() && self.supports_vtl_ret_action {
            Some(register_deferred_actions(self))
        } else {
            None
        };

        // SAFETY: The run page is guaranteed to be mapped and valid.
        // While the exit message might not be filled in yet we're only computing its address.
        let intercept_message = unsafe {
            &*sidecar.as_ref().map_or(
                std::ptr::addr_of!((*vp.run.as_ptr()).exit_message).cast(),
                |s| s.intercept_message().cast(),
            )
        };

        Ok(ProcessorRunner {
            hcl: self,
            vp,
            deferred_actions: actions,
            run: vp.run.as_ref(),
            intercept_message,
            state,
            sidecar,
        })
    }

    /// Trigger the following interrupt request.
    pub fn request_interrupt(
        &self,
        interrupt_control: hvdef::HvInterruptControl,
        destination_address: u64,
        requested_vector: u32,
        target_vtl: GuestVtl,
    ) -> Result<(), Error> {
        tracing::trace!(
            ?interrupt_control,
            destination_address,
            requested_vector,
            "requesting interrupt"
        );

        assert!(!self.isolation.is_hardware_isolated());

        let request = AssertVirtualInterrupt {
            partition_id: HV_PARTITION_ID_SELF,
            interrupt_control,
            destination_address,
            requested_vector,
            target_vtl: target_vtl as u8,
            rsvd0: 0,
            rsvd1: 0,
        };

        // SAFETY: calling the hypercall with correct input buffer.
        let output = unsafe {
            self.mshv_hvcall.hvcall(
                HypercallCode::HvCallAssertVirtualInterrupt,
                &request,
                &mut (),
            )
        }
        .unwrap();

        output.result().map_err(Error::RequestInterrupt)
    }

    /// Attempts to signal a given vp/sint/flag combo using HvSignalEventDirect.
    ///
    /// No result is returned because this request may be deferred until the
    /// hypervisor is returning to a lower VTL.
    pub fn signal_event_direct(&self, vp: u32, sint: u8, flag: u16) {
        tracing::trace!(vp, sint, flag, "signaling event");
        push_deferred_action(self, DeferredAction::SignalEvent { vp, sint, flag });
    }

    fn hvcall_signal_event_direct(&self, vp: u32, sint: u8, flag: u16) -> Result<bool, Error> {
        let signal_event_input = hvdef::hypercall::SignalEventDirect {
            target_partition: HV_PARTITION_ID_SELF,
            target_vp: vp,
            target_vtl: Vtl::Vtl0 as u8,
            target_sint: sint,
            flag_number: flag,
        };
        let mut signal_event_output = hvdef::hypercall::SignalEventDirectOutput {
            newly_signaled: 0,
            rsvd: [0; 7],
        };

        // SAFETY: calling the hypercall with correct input buffer.
        let output = unsafe {
            self.mshv_hvcall.hvcall(
                HypercallCode::HvCallSignalEventDirect,
                &signal_event_input,
                &mut signal_event_output,
            )
        }
        .unwrap();

        output
            .result()
            .map(|_| signal_event_output.newly_signaled != 0)
            .map_err(Error::SignalEvent)
    }

    /// Attempts to post a given message to a vp/sint combo using HvPostMessageDirect.
    pub fn post_message_direct(
        &self,
        vp: u32,
        sint: u8,
        message: &HvMessage,
    ) -> Result<(), HvError> {
        tracing::trace!(vp, sint, "posting message");

        let post_message = hvdef::hypercall::PostMessageDirect {
            partition_id: HV_PARTITION_ID_SELF,
            vp_index: vp,
            vtl: Vtl::Vtl0 as u8,
            padding0: [0; 3],
            sint,
            padding1: [0; 3],
            message: zerocopy::Unalign::new(*message),
            padding2: 0,
        };

        // SAFETY: calling the hypercall with correct input buffer.
        let output = unsafe {
            self.mshv_hvcall.hvcall(
                HypercallCode::HvCallPostMessageDirect,
                &post_message,
                &mut (),
            )
        }
        .unwrap();

        output.result()
    }

    /// Sets a file to poll during run. When the file's poll state changes, the
    /// run will be automatically cancelled.
    pub fn set_poll_file(&self, vp: u32, file: RawFd) -> Result<(), Error> {
        // SAFETY: calling the IOCTL as defined. This is safe even if the caller
        // does not own `file` since all this does is register the file for
        // polling.
        unsafe {
            hcl_set_poll_file(
                self.mshv_vtl.file.as_raw_fd(),
                &protocol::hcl_set_poll_file {
                    cpu: vp as i32,
                    fd: file,
                },
            )
            .map_err(Error::SetPollFile)?;
        }
        Ok(())
    }

    /// Gets the current hypervisor reference time.
    pub fn reference_time(&self) -> Result<u64, Error> {
        Ok(self
            .get_vp_register(HvAllArchRegisterName::TimeRefCount, HvInputVtl::CURRENT_VTL)?
            .as_u64())
    }

    /// Get a single VP register for the given VTL via hypercall. Only a select
    /// set of registers are supported; others will cause a panic.
    #[cfg(guest_arch = "x86_64")]
    pub fn get_vp_register(
        &self,
        name: impl Into<HvX64RegisterName>,
        vtl: HvInputVtl,
    ) -> Result<HvRegisterValue, Error> {
        self.mshv_hvcall.get_vp_register_for_vtl(vtl, name.into())
    }

    /// Get a single VP register for the given VTL via hypercall. Only a select
    /// set of registers are supported; others will cause a panic.
    #[cfg(guest_arch = "aarch64")]
    pub fn get_vp_register(
        &self,
        name: impl Into<HvArm64RegisterName>,
        vtl: HvInputVtl,
    ) -> Result<HvRegisterValue, Error> {
        self.mshv_hvcall.get_vp_register_for_vtl(vtl, name.into())
    }

    /// Set a single VP register via hypercall as VTL2. Only a select set of registers are
    /// supported, others will cause a panic.
    fn set_vp_register(
        &self,
        name: HvRegisterName,
        value: HvRegisterValue,
        vtl: HvInputVtl,
    ) -> Result<(), HvError> {
        match vtl.target_vtl().unwrap() {
            None | Some(Vtl::Vtl2) => {
                #[cfg(guest_arch = "x86_64")]
                assert!(matches!(
                    name.into(),
                    HvX64RegisterName::GuestVsmPartitionConfig
                        | HvX64RegisterName::VsmPartitionConfig
                        | HvX64RegisterName::PmTimerAssist
                ));

                #[cfg(guest_arch = "aarch64")]
                assert!(matches!(
                    name.into(),
                    HvArm64RegisterName::GuestVsmPartitionConfig
                        | HvArm64RegisterName::VsmPartitionConfig
                ));
            }
            Some(Vtl::Vtl1) => {
                // TODO: allowed registers for VTL1
                todo!();
            }
            Some(Vtl::Vtl0) => {
                // TODO: allowed registers for VTL0
                todo!();
            }
        }

        let header = hvdef::hypercall::GetSetVpRegisters {
            partition_id: HV_PARTITION_ID_SELF,
            vp_index: HV_VP_INDEX_SELF,
            target_vtl: HvInputVtl::CURRENT_VTL,
            rsvd: [0; 3],
        };

        let input = HvRegisterAssoc {
            name,
            pad: Default::default(),
            value,
        };

        tracing::trace!(?name, register = ?value, "HvCallSetVpRegisters");

        // SAFETY: The input header and rep slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let output = unsafe {
            self.mshv_hvcall
                .hvcall_rep::<hvdef::hypercall::GetSetVpRegisters, HvRegisterAssoc, u8>(
                    HypercallCode::HvCallSetVpRegisters,
                    &header,
                    HvcallRepInput::Elements(&[input]),
                    None,
                )
                .expect("set_vp_registers hypercall should not fail")
        };

        output.result()?;

        // hypercall must succeed with 1 rep completed
        assert_eq!(output.elements_processed(), 1);
        Ok(())
    }

    /// Translate the following gva to a gpa page.
    ///
    /// The caller must ensure `control_flags.input_vtl()` is set to a specific
    /// VTL.
    #[cfg(guest_arch = "aarch64")]
    pub fn translate_gva_to_gpa(
        &self,
        gva: u64,
        control_flags: hvdef::hypercall::TranslateGvaControlFlagsArm64,
    ) -> Result<Result<TranslateResult, aarch64::TranslateErrorAarch64>, TranslateGvaToGpaError>
    {
        use hvdef::hypercall;

        assert!(!self.isolation.is_hardware_isolated());
        assert!(
            control_flags.input_vtl().use_target_vtl(),
            "did not specify a target VTL"
        );

        let header = hypercall::TranslateVirtualAddressArm64 {
            partition_id: HV_PARTITION_ID_SELF,
            vp_index: HV_VP_INDEX_SELF,
            reserved: 0,
            control_flags,
            gva_page: gva >> hvdef::HV_PAGE_SHIFT,
        };

        let mut output: hypercall::TranslateVirtualAddressExOutputArm64 = FromZeros::new_zeroed();

        // SAFETY: The input header and slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.mshv_hvcall
                .hvcall(
                    HypercallCode::HvCallTranslateVirtualAddressEx,
                    &header,
                    &mut output,
                )
                .expect("translate can never fail")
        };

        status
            .result()
            .map_err(|hv_error| TranslateGvaToGpaError::Hypervisor { gva, hv_error })?;

        // Note: WHP doesn't currently support TranslateVirtualAddressEx, so overlay_page, cache_type,
        // event_info aren't trustworthy values if the results came from WHP.
        match output.translation_result.result.result_code() {
            c if c == hypercall::TranslateGvaResultCode::SUCCESS.0 => Ok(Ok(TranslateResult {
                gpa_page: output.gpa_page,
                overlay_page: output.translation_result.result.overlay_page(),
            })),
            x => Ok(Err(aarch64::TranslateErrorAarch64 { code: x })),
        }
    }

    fn to_hv_gpa_range_array(gpa_memory_ranges: &[MemoryRange]) -> Vec<HvGpaRange> {
        const PAGES_PER_ENTRY: u64 = 2048;
        const PAGE_SIZE: u64 = HV_PAGE_SIZE;

        // Estimate the total number of pages across all memory ranges
        let estimated_size: usize = gpa_memory_ranges
            .iter()
            .map(|memory_range| {
                let total_pages = (memory_range.end() - memory_range.start()).div_ceil(PAGE_SIZE);
                total_pages.div_ceil(PAGES_PER_ENTRY)
            })
            .sum::<u64>() as usize;

        // Create a vector with the estimated size
        let mut hv_gpa_ranges = Vec::with_capacity(estimated_size);

        for memory_range in gpa_memory_ranges {
            // Calculate the total number of pages in the memory range
            let total_pages = (memory_range.end() - memory_range.start()).div_ceil(PAGE_SIZE);

            // Convert start address to page number
            let start_page = memory_range.start_4k_gpn();

            // Generate the ranges and append them to the vector
            hv_gpa_ranges.extend(
                (0..total_pages)
                    .step_by(PAGES_PER_ENTRY as usize)
                    .map(|start| {
                        let end = std::cmp::min(total_pages, start + PAGES_PER_ENTRY);
                        let pages_in_this_range = end - start;
                        let gpa_page_number = start_page + start;

                        let extended = HvGpaRangeExtended::new()
                            .with_additional_pages(pages_in_this_range - 1)
                            .with_large_page(false) // Assuming not a large page
                            .with_gpa_page_number(gpa_page_number);

                        HvGpaRange(extended.into_bits())
                    }),
            );
        }

        hv_gpa_ranges // Return the vector at the end
    }

    fn pin_unpin_gpa_ranges_internal(
        &self,
        gpa_ranges: &[HvGpaRange],
        action: GpaPinUnpinAction,
    ) -> Result<(), PinUnpinError> {
        const PIN_REQUEST_HEADER_SIZE: usize =
            size_of::<hvdef::hypercall::PinUnpinGpaPageRangesHeader>();
        const MAX_INPUT_ELEMENTS: usize =
            (HV_PAGE_SIZE as usize - PIN_REQUEST_HEADER_SIZE) / size_of::<u64>();

        let header = hvdef::hypercall::PinUnpinGpaPageRangesHeader { reserved: 0 };
        let mut ranges_processed = 0;

        for chunk in gpa_ranges.chunks(MAX_INPUT_ELEMENTS) {
            // SAFETY: This unsafe block is valid because:
            // 1. The code and header going to match the expected input for the hypercall.
            //
            // 2. Hypercall result is checked right after the hypercall is issued.
            //
            let output = unsafe {
                self.mshv_hvcall
                    .hvcall_rep(
                        match action {
                            GpaPinUnpinAction::PinGpaRange => HypercallCode::HvCallPinGpaPageRanges,
                            GpaPinUnpinAction::UnpinGpaRange => {
                                HypercallCode::HvCallUnpinGpaPageRanges
                            }
                        },
                        &header,
                        HvcallRepInput::Elements(chunk),
                        None::<&mut [u8]>,
                    )
                    .expect("submitting pin/unpin hypercall should not fail")
            };

            ranges_processed += output.elements_processed();

            output.result().map_err(|e| PinUnpinError {
                ranges_processed,
                error: e,
            })?;
        }

        // At end all the ranges should be processed
        if ranges_processed == gpa_ranges.len() {
            Ok(())
        } else {
            Err(PinUnpinError {
                ranges_processed,
                error: HvError::OperationFailed,
            })
        }
    }

    fn perform_pin_unpin_gpa_ranges(
        &self,
        gpa_ranges: &[MemoryRange],
        action: GpaPinUnpinAction,
        rollback_action: GpaPinUnpinAction,
    ) -> Result<(), HvError> {
        let hv_gpa_ranges: Vec<HvGpaRange> = Self::to_hv_gpa_range_array(gpa_ranges);

        // Attempt to pin/unpin the ranges
        match self.pin_unpin_gpa_ranges_internal(&hv_gpa_ranges, action) {
            Ok(_) => Ok(()),
            Err(PinUnpinError {
                error,
                ranges_processed,
            }) => {
                // Unpin the ranges that were successfully pinned
                let pinned_ranges = &hv_gpa_ranges[..ranges_processed];
                if let Err(rollback_error) =
                    self.pin_unpin_gpa_ranges_internal(pinned_ranges, rollback_action)
                {
                    // Panic if rollback is failing
                    panic!(
                        "Failed to perform action {:?} on ranges. Error : {:?}. \
                        Attempted to rollback {:?} ranges out of {:?}.\n rollback error: {:?}",
                        action,
                        error,
                        ranges_processed,
                        gpa_ranges.len(),
                        rollback_error
                    );
                }
                // Surface the original error
                Err(error)
            }
        }
    }

    /// Pins the specified guest physical address ranges in the hypervisor.
    /// The memory ranges passed to this function must be VA backed memory.
    /// If a partial failure occurs (i.e., some but not all the ranges were successfully pinned),
    /// the function will automatically attempt to unpin any successfully pinned ranges.
    /// This "rollback" behavior ensures that no partially pinned state remains, which
    /// could otherwise lead to inconsistencies.
    ///
    pub fn pin_gpa_ranges(&self, ranges: &[MemoryRange]) -> Result<(), HvError> {
        self.perform_pin_unpin_gpa_ranges(
            ranges,
            GpaPinUnpinAction::PinGpaRange,
            GpaPinUnpinAction::UnpinGpaRange,
        )
    }

    /// Unpins the specified guest physical address ranges in the hypervisor.
    /// The memory ranges passed to this function must be VA backed memory.
    /// If a partial failure occurs (i.e., some but not all the ranges were successfully unpinned),
    /// the function will automatically attempt to pin any successfully unpinned ranges. This "rollback"
    /// behavior ensures that no partially unpinned state remains, which could otherwise lead to inconsistencies.
    ///
    pub fn unpin_gpa_ranges(&self, ranges: &[MemoryRange]) -> Result<(), HvError> {
        self.perform_pin_unpin_gpa_ranges(
            ranges,
            GpaPinUnpinAction::UnpinGpaRange,
            GpaPinUnpinAction::PinGpaRange,
        )
    }

    /// Read the vsm capabilities register for VTL2.
    pub fn get_vsm_capabilities(&self) -> Result<hvdef::HvRegisterVsmCapabilities, Error> {
        let caps = hvdef::HvRegisterVsmCapabilities::from(
            self.get_vp_register(
                HvAllArchRegisterName::VsmCapabilities,
                HvInputVtl::CURRENT_VTL,
            )?
            .as_u64(),
        );

        let caps = match self.isolation {
            IsolationType::None | IsolationType::Vbs => caps,
            // TODO SNP: Return actions may be useful, but with alternate injection many of these need
            // cannot actually be processed by the hypervisor without returning to VTL2.
            // Filter them out for now.
            IsolationType::Snp => hvdef::HvRegisterVsmCapabilities::new()
                .with_deny_lower_vtl_startup(caps.deny_lower_vtl_startup())
                .with_intercept_page_available(caps.intercept_page_available()),
            IsolationType::Tdx => hvdef::HvRegisterVsmCapabilities::new()
                .with_deny_lower_vtl_startup(caps.deny_lower_vtl_startup())
                .with_intercept_page_available(caps.intercept_page_available())
                .with_dr6_shared(true),
        };

        assert_eq!(caps.dr6_shared(), self.dr6_shared());

        Ok(caps)
    }

    /// Set the [`hvdef::HvRegisterVsmPartitionConfig`] register.
    pub fn set_vtl2_vsm_partition_config(
        &self,
        vsm_config: HvRegisterVsmPartitionConfig,
    ) -> Result<(), SetVsmPartitionConfigError> {
        self.set_vp_register(
            HvAllArchRegisterName::VsmPartitionConfig.into(),
            HvRegisterValue::from(u64::from(vsm_config)),
            HvInputVtl::CURRENT_VTL,
        )
        .map_err(|e| SetVsmPartitionConfigError::Hypervisor {
            config: vsm_config,
            hv_error: e,
        })
    }

    /// Get the [`hvdef::HvRegisterGuestVsmPartitionConfig`] register
    pub fn get_guest_vsm_partition_config(
        &self,
    ) -> Result<hvdef::HvRegisterGuestVsmPartitionConfig, Error> {
        Ok(hvdef::HvRegisterGuestVsmPartitionConfig::from(
            self.get_vp_register(
                HvAllArchRegisterName::GuestVsmPartitionConfig,
                HvInputVtl::CURRENT_VTL,
            )?
            .as_u64(),
        ))
    }

    /// Configure guest VSM.
    /// The only configuration attribute currently supported is changing the maximum number of
    /// guest-visible virtual trust levels for the partition. (VTL 1)
    pub fn set_guest_vsm_partition_config(
        &self,
        enable_guest_vsm: bool,
    ) -> Result<(), SetGuestVsmConfigError> {
        let register_value = hvdef::HvRegisterGuestVsmPartitionConfig::new()
            .with_maximum_vtl(if enable_guest_vsm { 1 } else { 0 })
            .with_reserved(0);

        tracing::trace!(enable_guest_vsm, "set_guest_vsm_partition_config");
        if self.isolation.is_hardware_isolated() {
            unimplemented!("set_guest_vsm_partition_config");
        }

        self.set_vp_register(
            HvAllArchRegisterName::GuestVsmPartitionConfig.into(),
            HvRegisterValue::from(u64::from(register_value)),
            HvInputVtl::CURRENT_VTL,
        )
        .map_err(|e| SetGuestVsmConfigError::Hypervisor {
            enable_guest_vsm,
            hv_error: e,
        })
    }

    /// Sets the Power Management Timer assist in the hypervisor.
    #[cfg(guest_arch = "x86_64")]
    pub fn set_pm_timer_assist(&self, port: Option<u16>) -> Result<(), HvError> {
        tracing::debug!(?port, "set_pm_timer_assist");
        if self.isolation.is_hardware_isolated() {
            if port.is_some() {
                unimplemented!("set_pm_timer_assist");
            }
        }

        let val = HvRegisterValue::from(u64::from(match port {
            Some(p) => hvdef::HvPmTimerInfo::new()
                .with_port(p)
                .with_enabled(true)
                .with_width_24(false),
            None => 0.into(),
        }));

        self.set_vp_register(
            HvX64RegisterName::PmTimerAssist.into(),
            val,
            HvInputVtl::CURRENT_VTL,
        )
    }

    /// Sets the Power Management Timer assist in the hypervisor.
    #[cfg(guest_arch = "aarch64")]
    pub fn set_pm_timer_assist(&self, port: Option<u16>) -> Result<(), HvError> {
        tracing::debug!(?port, "set_pm_timer_assist unimplemented on aarch64");
        Err(HvError::UnknownRegisterName)
    }

    /// Sets the VTL protection mask for the specified memory range.
    pub fn modify_vtl_protection_mask(
        &self,
        range: MemoryRange,
        map_flags: HvMapGpaFlags,
        target_vtl: HvInputVtl,
    ) -> Result<(), ApplyVtlProtectionsError> {
        if self.isolation.is_hardware_isolated() {
            // TODO SNP TODO TDX - required for vmbus relay monitor page support
            todo!();
        }

        self.mshv_hvcall
            .modify_vtl_protection_mask(range, map_flags, target_vtl)
    }

    /// Checks whether the target vtl has vtl permissions for the given gpa
    pub fn check_vtl_access(
        &self,
        gpa: u64,
        target_vtl: GuestVtl,
        flags: HvMapGpaFlags,
    ) -> Result<Option<CheckVtlAccessResult>, Error> {
        assert!(!self.isolation.is_hardware_isolated());

        let header = hvdef::hypercall::CheckSparseGpaPageVtlAccess {
            partition_id: HV_PARTITION_ID_SELF,
            target_vtl: HvInputVtl::from(target_vtl),
            desired_access: u32::from(flags) as u8,
            reserved0: 0,
            reserved1: 0,
        };

        let mut output = [hvdef::hypercall::CheckSparseGpaPageVtlAccessOutput::new()];

        // SAFETY: The input header and rep slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.mshv_hvcall.hvcall_rep::<hvdef::hypercall::CheckSparseGpaPageVtlAccess, u64, hvdef::hypercall::CheckSparseGpaPageVtlAccessOutput>(
                HypercallCode::HvCallCheckSparseGpaPageVtlAccess,
                &header,
                HvcallRepInput::Elements(&[gpa >> hvdef::HV_PAGE_SHIFT]),
                Some(&mut output),
            )
            .expect("check_vtl_access hypercall should not fail")
        };

        // TODO GUEST_VSM: for isolated VMs, if the status is operation denied,
        // return memory unaccepted?
        status.result().map_err(Error::CheckVtlAccess)?;

        let access_result = output[0];

        if access_result.result_code() as u32
            != hvdef::hypercall::CheckGpaPageVtlAccessResultCode::SUCCESS.0
        {
            return Ok(Some(CheckVtlAccessResult {
                vtl: (access_result.intercepting_vtl() as u8)
                    .try_into()
                    .expect("checking vtl permissions failure should return valid vtl"),
                denied_flags: (access_result.denied_access() as u32).into(),
            }));
        }

        assert_eq!(status.elements_processed(), 1);
        Ok(None)
    }

    /// Enables a vtl for the partition
    pub fn enable_partition_vtl(
        &self,
        vtl: GuestVtl,
        flags: hvdef::hypercall::EnablePartitionVtlFlags,
    ) -> Result<(), HvError> {
        use hvdef::hypercall;

        let header = hypercall::EnablePartitionVtl {
            partition_id: HV_PARTITION_ID_SELF,
            target_vtl: vtl.into(),
            flags,
            reserved_z0: 0,
            reserved_z1: 0,
        };

        // SAFETY: The input header and slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.mshv_hvcall
                .hvcall(HypercallCode::HvCallEnablePartitionVtl, &header, &mut ())
                .expect("submitting hypercall should not fail")
        };

        status.result()
    }

    /// Enables a vtl on a vp
    pub fn enable_vp_vtl(
        &self,
        vp_index: u32,
        vtl: GuestVtl,
        hv_vp_context: InitialVpContextX64,
    ) -> Result<(), HvError> {
        use hvdef::hypercall;

        let header = hypercall::EnableVpVtlX64 {
            partition_id: HV_PARTITION_ID_SELF,
            vp_index,
            target_vtl: vtl.into(),
            reserved: [0; 3],
            vp_vtl_context: hv_vp_context,
        };

        // SAFETY: The input header and slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.mshv_hvcall
                .hvcall(HypercallCode::HvCallEnableVpVtl, &header, &mut ())
                .expect("submitting hypercall should not fail")
        };

        status.result()
    }

    /// Gets the PFN for the VTL 1 VMSA
    pub fn vtl1_vmsa_pfn(&self, vp_index: u32) -> u64 {
        let mut vp_pfn = vp_index as u64; // input vp, output pfn

        // SAFETY: The ioctl requires no prerequisites other than the VTL 1 VMSA
        // should be mapped. This ioctl should never fail as long as the vtl 1
        // VMSA was mapped.
        unsafe {
            hcl_read_guest_vsm_page_pfn(self.mshv_vtl.file.as_raw_fd(), &mut vp_pfn)
                .expect("should always succeed");
        }

        vp_pfn
    }

    /// Returns the isolation type for the partition.
    pub fn isolation(&self) -> IsolationType {
        self.isolation
    }

    /// Reads MSR_IA32_VMX_CR4_FIXED1 in kernel mode.
    pub fn read_vmx_cr4_fixed1(&self) -> u64 {
        let mut value = 0;

        // SAFETY: The ioctl requires no prerequisites other than a location to
        // write the read MSR. This ioctl should never fail.
        unsafe {
            hcl_read_vmx_cr4_fixed1(self.mshv_vtl.file.as_raw_fd(), &mut value)
                .expect("should always succeed");
        }

        value
    }

    /// Invokes the HvCallMemoryMappedIoRead hypercall
    pub fn memory_mapped_io_read(&self, gpa: u64, data: &mut [u8]) -> Result<(), HvError> {
        assert!(data.len() <= hvdef::hypercall::HV_HYPERCALL_MMIO_MAX_DATA_LENGTH);

        let header = hvdef::hypercall::MemoryMappedIoRead {
            gpa,
            access_width: data.len() as u32,
            reserved_z0: 0,
        };

        let mut output: hvdef::hypercall::MemoryMappedIoReadOutput = FromZeros::new_zeroed();

        // SAFETY: The input header and slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.mshv_hvcall
                .hvcall(
                    HypercallCode::HvCallMemoryMappedIoRead,
                    &header,
                    &mut output,
                )
                .expect("submitting hypercall should not fail")
        };

        // Only copy the data if the hypercall was successful
        if status.result().is_ok() {
            data.copy_from_slice(&output.data[..data.len()]);
        };

        status.result()
    }

    /// Invokes the HvCallMemoryMappedIoWrite hypercall
    pub fn memory_mapped_io_write(&self, gpa: u64, data: &[u8]) -> Result<(), HvError> {
        assert!(data.len() <= hvdef::hypercall::HV_HYPERCALL_MMIO_MAX_DATA_LENGTH);

        let mut header = hvdef::hypercall::MemoryMappedIoWrite {
            gpa,
            access_width: data.len() as u32,
            reserved_z0: 0,
            data: [0; hvdef::hypercall::HV_HYPERCALL_MMIO_MAX_DATA_LENGTH],
        };

        header.data[..data.len()].copy_from_slice(data);

        // SAFETY: The input header and slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.mshv_hvcall
                .hvcall(HypercallCode::HvCallMemoryMappedIoWrite, &header, &mut ())
                .expect("submitting hypercall should not fail")
        };

        status.result()
    }

    /// Invokes the HvCallRetargetDeviceInterrupt hypercall.
    /// `target_processors` must be sorted in ascending order.
    pub fn retarget_device_interrupt(
        &self,
        device_id: u64,
        entry: hvdef::hypercall::InterruptEntry,
        vector: u32,
        multicast: bool,
        target_processors: ProcessorSet<'_>,
    ) -> Result<(), HvError> {
        let header = hvdef::hypercall::RetargetDeviceInterrupt {
            partition_id: HV_PARTITION_ID_SELF,
            device_id,
            entry,
            rsvd: 0,
            target_header: hvdef::hypercall::InterruptTarget {
                vector,
                flags: hvdef::hypercall::HvInterruptTargetFlags::default()
                    .with_multicast(multicast)
                    .with_processor_set(true),
                // Always use a generic processor set to simplify construction. This hypercall is
                // invoked relatively infrequently, the overhead should be acceptable.
                mask_or_format: hvdef::hypercall::HV_GENERIC_SET_SPARSE_4K,
            },
        };
        let processor_set = Vec::from_iter(target_processors.as_generic_set());

        // SAFETY: The input header and slice are the correct types for this hypercall.
        //         The hypercall output is validated right after the hypercall is issued.
        let status = unsafe {
            self.mshv_hvcall
                .hvcall_var(
                    HypercallCode::HvCallRetargetDeviceInterrupt,
                    &header,
                    processor_set.as_bytes(),
                    &mut (),
                )
                .expect("submitting hypercall should not fail")
        };

        status.result()
    }

    /// Gets the permissions for a vtl.
    /// Currently unused, but available for debugging purposes
    #[cfg(debug_assertions)]
    pub fn rmp_query(&self, gpa: u64, vtl: GuestVtl) -> x86defs::snp::SevRmpAdjust {
        use x86defs::snp::SevRmpAdjust;

        let page_count = 1u64;
        let flags = [u64::from(SevRmpAdjust::new().with_target_vmpl(match vtl {
            GuestVtl::Vtl0 => 2,
            GuestVtl::Vtl1 => 1,
        }))];
        let page_size = [0u64];
        let pages_processed = 0;

        debug_assert!(flags.len() == page_count as usize);
        debug_assert!(page_size.len() == page_count as usize);

        let query = mshv_rmpquery {
            start_pfn: gpa / HV_PAGE_SIZE,
            page_count,
            terminate_on_failure: 0,
            ram: 0,
            padding: Default::default(),
            flags: flags.as_ptr().cast_mut(),
            page_size: page_size.as_ptr().cast_mut(),
            pages_processed: core::ptr::from_ref(&pages_processed).cast_mut(),
        };

        // SAFETY: the input query is the correct type for this ioctl
        unsafe {
            hcl_rmpquery_pages(self.mshv_vtl.file.as_raw_fd(), &query)
                .expect("should always succeed");
        }
        debug_assert!(pages_processed <= page_count);

        SevRmpAdjust::from(flags[0])
    }

    /// Issues an INVLPGB instruction.
    pub fn invlpgb(&self, rax: u64, edx: u32, ecx: u32) {
        let data = mshv_invlpgb {
            rax,
            edx,
            ecx,
            _pad0: 0,
            _pad1: 0,
        };
        // SAFETY: ioctl has no prerequisites.
        unsafe {
            hcl_invlpgb(self.mshv_vtl.file.as_raw_fd(), &data).expect("should always succeed");
        }
    }

    /// Issues a TLBSYNC instruction.
    pub fn tlbsync(&self) {
        // SAFETY: ioctl has no prerequisites.
        unsafe {
            hcl_tlbsync(self.mshv_vtl.file.as_raw_fd()).expect("should always succeed");
        }
    }
}