hcl/ioctl.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Interface to `mshv_vtl` driver.
mod deferred;
pub mod aarch64;
pub mod snp;
pub mod tdx;
pub mod x64;
use self::deferred::DeferredActionSlots;
use self::ioctls::*;
use crate::GuestVtl;
use crate::ioctl::deferred::DeferredAction;
use crate::mapped_page::MappedPage;
use crate::protocol;
use crate::protocol::EnterModes;
use crate::protocol::HCL_REG_PAGE_OFFSET;
use crate::protocol::HCL_VMSA_GUEST_VSM_PAGE_OFFSET;
use crate::protocol::HCL_VMSA_PAGE_OFFSET;
use crate::protocol::MSHV_APIC_PAGE_OFFSET;
use crate::protocol::hcl_intr_offload_flags;
use crate::protocol::hcl_run;
use deferred::RegisteredDeferredActions;
use deferred::push_deferred_action;
use deferred::register_deferred_actions;
use hv1_structs::ProcessorSet;
use hv1_structs::VtlArray;
use hvdef::HV_PAGE_SIZE;
use hvdef::HV_PARTITION_ID_SELF;
use hvdef::HV_VP_INDEX_SELF;
use hvdef::HvAllArchRegisterName;
#[cfg(guest_arch = "aarch64")]
use hvdef::HvArm64RegisterName;
use hvdef::HvError;
use hvdef::HvMapGpaFlags;
use hvdef::HvMessage;
use hvdef::HvRegisterName;
use hvdef::HvRegisterValue;
use hvdef::HvRegisterVsmPartitionConfig;
use hvdef::HvStatus;
use hvdef::HvX64RegisterName;
use hvdef::HvX64RegisterPage;
use hvdef::HypercallCode;
use hvdef::Vtl;
use hvdef::hypercall::AssertVirtualInterrupt;
use hvdef::hypercall::HostVisibilityType;
use hvdef::hypercall::HvGpaRange;
use hvdef::hypercall::HvGpaRangeExtended;
use hvdef::hypercall::HvInputVtl;
use hvdef::hypercall::HvInterceptParameters;
use hvdef::hypercall::HvInterceptType;
use hvdef::hypercall::HvRegisterAssoc;
use hvdef::hypercall::HypercallOutput;
use hvdef::hypercall::InitialVpContextX64;
use hvdef::hypercall::ModifyHostVisibility;
use memory_range::MemoryRange;
use pal::unix::pthread::*;
use parking_lot::Mutex;
use private::BackingPrivate;
use sidecar_client::NewSidecarClientError;
use sidecar_client::SidecarClient;
use sidecar_client::SidecarRun;
use sidecar_client::SidecarVp;
use std::cell::UnsafeCell;
use std::fmt::Debug;
use std::fs::File;
use std::io;
use std::os::unix::prelude::*;
use std::sync::Arc;
use std::sync::Once;
use std::sync::atomic::AtomicU8;
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering;
use thiserror::Error;
use user_driver::DmaClient;
use user_driver::memory::MemoryBlock;
use x86defs::snp::SevVmsa;
use x86defs::tdx::TdCallResultCode;
use x86defs::vmx::ApicPage;
use zerocopy::FromBytes;
use zerocopy::FromZeros;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;
/// Error returned by HCL operations.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum Error {
#[error("failed to open mshv device")]
OpenMshv(#[source] io::Error),
#[error("failed to open hvcall device")]
OpenHvcall(#[source] io::Error),
#[error("failed to open lower VTL memory device")]
OpenGpa(#[source] io::Error),
#[error("ReturnToLowerVtl")]
ReturnToLowerVtl(#[source] nix::Error),
#[error("AddVtl0Memory")]
AddVtl0Memory(#[source] nix::Error),
#[error("hcl_set_vp_register")]
SetVpRegister(#[source] nix::Error),
#[error("hcl_get_vp_register")]
GetVpRegister(#[source] nix::Error),
#[error("failed to get VP register {reg:#x?} from hypercall")]
GetVpRegisterHypercall {
#[cfg(guest_arch = "x86_64")]
reg: HvX64RegisterName,
#[cfg(guest_arch = "aarch64")]
reg: HvArm64RegisterName,
#[source]
err: HvError,
},
#[error("hcl_request_interrupt")]
RequestInterrupt(#[source] HvError),
#[error("hcl_cancel_vp failed")]
CancelVp(#[source] nix::Error),
#[error("failed to signal event")]
SignalEvent(#[source] HvError),
#[error("failed to post message")]
PostMessage(#[source] HvError),
#[error("failed to mmap the vp context {:?}", .1.map(|vtl| format!("for VTL {:?}", vtl)).unwrap_or("".to_string()))]
MmapVp(#[source] io::Error, Option<Vtl>),
#[error("failed to set the poll file")]
SetPollFile(#[source] nix::Error),
#[error("failed to check hcl capabilities")]
CheckExtensions(#[source] nix::Error),
#[error("failed to mmap the register page")]
MmapRegPage(#[source] io::Error),
#[error("invalid num signal events")]
NumSignalEvent(#[source] io::Error),
#[error("failed to create vtl")]
CreateVTL(#[source] nix::Error),
#[error("Gva to gpa translation failed")]
TranslateGvaToGpa(#[source] TranslateGvaToGpaError),
#[error("gpa failed vtl access check")]
CheckVtlAccess(#[source] HvError),
#[error("failed to set registers using set_vp_registers hypercall")]
SetRegisters(#[source] HvError),
#[error("Unknown register name: {0:x}")]
UnknownRegisterName(u32),
#[error("Invalid register value")]
InvalidRegisterValue,
#[error("failed to set host visibility")]
SetHostVisibility(#[source] nix::Error),
#[error("failed to allocate host overlay page")]
HostOverlayPageExhausted,
#[error("sidecar error")]
Sidecar(#[source] sidecar_client::SidecarError),
#[error("failed to open sidecar")]
OpenSidecar(#[source] NewSidecarClientError),
#[error(
"mismatch between requested isolation type {requested:?} and supported isolation type {supported:?}"
)]
MismatchedIsolation {
supported: IsolationType,
requested: IsolationType,
},
#[error("private page pool allocator missing, required for requested isolation type")]
MissingPrivateMemory,
#[error("failed to allocate pages for vp")]
AllocVp(#[source] anyhow::Error),
}
/// Error for IOCTL errors specifically.
#[derive(Debug, Error)]
#[error("hcl request failed")]
pub struct IoctlError(#[source] pub(crate) nix::Error);
/// Error returned when issuing hypercalls.
#[derive(Debug, Error)]
#[expect(missing_docs)]
pub enum HypercallError {
#[error("hypercall failed with {0:?}")]
Hypervisor(HvError),
#[error("ioctl failed")]
Ioctl(#[source] IoctlError),
}
impl HypercallError {
pub(crate) fn check(r: Result<i32, nix::Error>) -> Result<(), Self> {
match r {
Ok(n) => HvStatus(n.try_into().expect("hypervisor result out of range"))
.result()
.map_err(Self::Hypervisor),
Err(err) => Err(Self::Ioctl(IoctlError(err))),
}
}
}
/// Errors when issuing hypercalls via the kernel direct interface.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum HvcallError {
#[error(
"kernel rejected the hypercall, most likely due to the hypercall code not being allowed via set_allowed_hypercalls"
)]
HypercallIoctlFailed(#[source] nix::Error),
#[error("input parameters are larger than a page")]
InputParametersTooLarge,
#[error("output parameters are larger than a page")]
OutputParametersTooLarge,
#[error("output and input list lengths do not match")]
InputOutputRepListMismatch,
}
/// Error applying VTL protections.
// TODO: move to `underhill_mem`.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum ApplyVtlProtectionsError {
#[error(
"hypervisor returned {output:?} error {hv_error:?} when protecting pages {range} for vtl {vtl:?}"
)]
Hypervisor {
range: MemoryRange,
output: HypercallOutput,
#[source]
hv_error: HvError,
vtl: HvInputVtl,
},
#[error(
"{failed_operation} when protecting pages {range} with {permissions:x?} for vtl {vtl:?}"
)]
Snp {
#[source]
failed_operation: snp::SnpPageError,
range: MemoryRange,
permissions: x86defs::snp::SevRmpAdjust,
vtl: HvInputVtl,
},
#[error(
"tdcall failed with {error:?} when protecting pages {range} with permissions {permissions:x?} for vtl {vtl:?}"
)]
Tdx {
error: TdCallResultCode,
range: MemoryRange,
permissions: x86defs::tdx::TdgMemPageGpaAttr,
vtl: HvInputVtl,
},
#[error("no valid protections for vtl {0:?}")]
InvalidVtl(Vtl),
}
/// Error setting guest VSM configuration.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum SetGuestVsmConfigError {
#[error(
"hypervisor returned error {hv_error:?} when configuring guest vsm {enable_guest_vsm:?}"
)]
Hypervisor {
enable_guest_vsm: bool,
hv_error: HvError,
},
}
/// Error getting the VP idnex from an APIC ID.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum GetVpIndexFromApicIdError {
#[error("hypervisor returned error {hv_error:?} when querying vp index for {apic_id}")]
Hypervisor { hv_error: HvError, apic_id: u32 },
}
/// Error setting VSM partition configuration.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum SetVsmPartitionConfigError {
#[error(
"hypervisor returned error {hv_error:?} when configuring vsm partition config {config:?}"
)]
Hypervisor {
config: HvRegisterVsmPartitionConfig,
hv_error: HvError,
},
}
/// Error translating a GVA to a GPA.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum TranslateGvaToGpaError {
#[error("hypervisor returned error {hv_error:?} on gva {gva:x}")]
Hypervisor { gva: u64, hv_error: HvError },
#[error("sidecar kernel failed on gva {gva:x}")]
Sidecar {
gva: u64,
#[source]
error: sidecar_client::SidecarError,
},
}
/// Result from [`Hcl::check_vtl_access`] if vtl permissions were violated
#[derive(Debug)]
pub struct CheckVtlAccessResult {
/// The intercepting VTL.
pub vtl: Vtl,
/// The flags that were denied.
pub denied_flags: HvMapGpaFlags,
}
/// Error accepting pages.
// TODO: move to `underhill_mem`.
#[derive(Error, Debug)]
#[expect(missing_docs)]
pub enum AcceptPagesError {
#[error("hypervisor returned {output:?} error {hv_error:?} when accepting pages {range}")]
Hypervisor {
range: MemoryRange,
output: HypercallOutput,
hv_error: HvError,
},
#[error("{failed_operation} when protecting pages {range}")]
Snp {
failed_operation: snp::SnpPageError,
range: MemoryRange,
},
#[error("tdcall failed with {error:?} when accepting pages {range}")]
Tdx {
error: tdcall::AcceptPagesError,
range: MemoryRange,
},
}
// Action translation(to HVCALL) for pin/unpin GPA range.
#[derive(Debug, Copy, Clone)]
enum GpaPinUnpinAction {
PinGpaRange,
UnpinGpaRange,
}
/// Error pinning a GPA.
#[derive(Error, Debug)]
#[error("partial success: {ranges_processed} operations succeeded, but encountered an error")]
struct PinUnpinError {
ranges_processed: usize,
error: HvError,
}
/// Result of translate gva hypercall from [`Hcl`]
pub struct TranslateResult {
/// The GPA that the GVA translated to.
pub gpa_page: u64,
/// Whether the page was an overlay page.
pub overlay_page: bool, // Note: hardcoded to false on WHP
}
/// Possible types for rep hypercalls
enum HvcallRepInput<'a, T> {
/// The actual elements to rep over
Elements(&'a [T]),
/// The elements for the rep are implied and only a count is needed
Count(u16),
}
mod ioctls {
#![allow(non_camel_case_types)]
use crate::protocol;
use hvdef::hypercall::HvRegisterAssoc;
use nix::ioctl_none;
use nix::ioctl_read;
use nix::ioctl_readwrite;
use nix::ioctl_write_ptr;
// The unsafe interface to the `mshv` kernel module comprises
// the following IOCTLs.
const MSHV_IOCTL: u8 = 0xb8;
const MSHV_VTL_RETURN_TO_LOWER_VTL: u16 = 0x27;
const MSHV_SET_VP_REGISTERS: u16 = 0x6;
const MSHV_GET_VP_REGISTERS: u16 = 0x5;
const MSHV_HVCALL_SETUP: u16 = 0x1E;
const MSHV_HVCALL: u16 = 0x1F;
const MSHV_VTL_ADD_VTL0_MEMORY: u16 = 0x21;
const MSHV_VTL_SET_POLL_FILE: u16 = 0x25;
const MSHV_CREATE_VTL: u16 = 0x1D;
const MSHV_CHECK_EXTENSION: u16 = 0x00;
const MSHV_VTL_PVALIDATE: u16 = 0x28;
const MSHV_VTL_RMPADJUST: u16 = 0x29;
const MSHV_VTL_TDCALL: u16 = 0x32;
const MSHV_VTL_READ_VMX_CR4_FIXED1: u16 = 0x33;
const MSHV_VTL_GUEST_VSM_VMSA_PFN: u16 = 0x34;
const MSHV_VTL_RMPQUERY: u16 = 0x35;
const MSHV_INVLPGB: u16 = 0x36;
const MSHV_TLBSYNC: u16 = 0x37;
#[repr(C)]
#[derive(Copy, Clone)]
pub struct mshv_vp_registers {
pub count: ::std::os::raw::c_int,
pub regs: *mut HvRegisterAssoc,
}
#[repr(C, packed)]
#[derive(Copy, Clone)]
pub struct mshv_pvalidate {
/// Execute the pvalidate instruction on the set of memory pages specified
pub start_pfn: ::std::os::raw::c_ulonglong,
pub page_count: ::std::os::raw::c_ulonglong,
pub validate: ::std::os::raw::c_uchar,
pub terminate_on_failure: ::std::os::raw::c_uchar,
/// Set to 1 if the page is RAM (from the kernel's perspective), 0 if
/// it's device memory.
pub ram: u8,
pub padding: [::std::os::raw::c_uchar; 1],
}
#[repr(C, packed)]
#[derive(Copy, Clone)]
pub struct mshv_rmpadjust {
/// Execute the rmpadjust instruction on the set of memory pages specified
pub start_pfn: ::std::os::raw::c_ulonglong,
pub page_count: ::std::os::raw::c_ulonglong,
pub value: ::std::os::raw::c_ulonglong,
pub terminate_on_failure: ::std::os::raw::c_uchar,
/// Set to 1 if the page is RAM (from the kernel's perspective), 0 if
/// it's device memory.
pub ram: u8,
pub padding: [::std::os::raw::c_uchar; 6],
}
#[repr(C, packed)]
#[derive(Copy, Clone)]
pub struct mshv_rmpquery {
/// Execute the rmpquery instruction on the set of memory pages specified
pub start_pfn: ::std::os::raw::c_ulonglong,
pub page_count: ::std::os::raw::c_ulonglong,
pub terminate_on_failure: ::std::os::raw::c_uchar,
/// Set to 1 if the page is RAM (from the kernel's perspective), 0 if
/// it's device memory.
pub ram: u8,
pub padding: [::std::os::raw::c_uchar; 6],
/// Output array for the flags, must have at least `page_count` entries.
pub flags: *mut ::std::os::raw::c_ulonglong,
/// Output array for the page sizes, must have at least `page_count` entries.
pub page_size: *mut ::std::os::raw::c_ulonglong,
/// Output for the amount of pages processed, a scalar.
pub pages_processed: *mut ::std::os::raw::c_ulonglong,
}
#[repr(C, packed)]
#[derive(Copy, Clone)]
pub struct mshv_tdcall {
pub rax: u64, // Call code and returned status
pub rcx: u64,
pub rdx: u64,
pub r8: u64,
pub r9: u64,
pub r10_out: u64, // only supported as output
pub r11_out: u64, // only supported as output
}
ioctl_none!(
/// Relinquish the processor to VTL0.
hcl_return_to_lower_vtl,
MSHV_IOCTL,
MSHV_VTL_RETURN_TO_LOWER_VTL
);
ioctl_write_ptr!(
/// Set a VTL0 register for the current processor of the current
/// partition.
/// It is not allowed to set registers for other processors or
/// other partitions for the security and coherency reasons.
hcl_set_vp_register,
MSHV_IOCTL,
MSHV_SET_VP_REGISTERS,
mshv_vp_registers
);
ioctl_readwrite!(
/// Get a VTL0 register for the current processor of the current
/// partition.
/// It is not allowed to get registers of other processors or
/// other partitions for the security and coherency reasons.
hcl_get_vp_register,
MSHV_IOCTL,
MSHV_GET_VP_REGISTERS,
mshv_vp_registers
);
ioctl_write_ptr!(
/// Adds the VTL0 memory as a ZONE_DEVICE memory (I/O) to support
/// DMA from the guest.
hcl_add_vtl0_memory,
MSHV_IOCTL,
MSHV_VTL_ADD_VTL0_MEMORY,
protocol::hcl_pfn_range_t
);
ioctl_write_ptr!(
/// Sets the file to be polled while running a VP in VTL0. If the file
/// becomes readable, then the VP run will be cancelled.
hcl_set_poll_file,
MSHV_IOCTL,
MSHV_VTL_SET_POLL_FILE,
protocol::hcl_set_poll_file
);
ioctl_write_ptr!(
/// Sets up the hypercall allow map. Allowed once
/// per fd.
hcl_hvcall_setup,
MSHV_IOCTL,
MSHV_HVCALL_SETUP,
protocol::hcl_hvcall_setup
);
ioctl_readwrite!(
/// Performs a hypercall from the user mode.
hcl_hvcall,
MSHV_IOCTL,
MSHV_HVCALL,
protocol::hcl_hvcall
);
ioctl_write_ptr!(
/// Executes the pvalidate instruction on a page range.
hcl_pvalidate_pages,
MSHV_IOCTL,
MSHV_VTL_PVALIDATE,
mshv_pvalidate
);
ioctl_write_ptr!(
/// Executes the rmpadjust instruction on a page range.
hcl_rmpadjust_pages,
MSHV_IOCTL,
MSHV_VTL_RMPADJUST,
mshv_rmpadjust
);
ioctl_write_ptr!(
/// Executes the rmpquery instruction on a page range.
hcl_rmpquery_pages,
MSHV_IOCTL,
MSHV_VTL_RMPQUERY,
mshv_rmpquery
);
ioctl_readwrite!(
/// Executes a tdcall.
hcl_tdcall,
MSHV_IOCTL,
MSHV_VTL_TDCALL,
mshv_tdcall
);
ioctl_read!(
hcl_read_vmx_cr4_fixed1,
MSHV_IOCTL,
MSHV_VTL_READ_VMX_CR4_FIXED1,
u64
);
ioctl_readwrite!(
hcl_read_guest_vsm_page_pfn,
MSHV_IOCTL,
MSHV_VTL_GUEST_VSM_VMSA_PFN,
u64
);
pub const HCL_CAP_REGISTER_PAGE: u32 = 1;
pub const HCL_CAP_VTL_RETURN_ACTION: u32 = 2;
pub const HCL_CAP_DR6_SHARED: u32 = 3;
ioctl_write_ptr!(
/// Check for the presence of an extension capability.
hcl_check_extension,
MSHV_IOCTL,
MSHV_CHECK_EXTENSION,
u32
);
ioctl_read!(mshv_create_vtl, MSHV_IOCTL, MSHV_CREATE_VTL, u8);
#[repr(C)]
pub struct mshv_invlpgb {
pub rax: u64,
pub _pad0: u32,
pub edx: u32,
pub _pad1: u32,
pub ecx: u32,
}
ioctl_write_ptr!(
/// Issue an INVLPGB instruction.
hcl_invlpgb,
MSHV_IOCTL,
MSHV_INVLPGB,
mshv_invlpgb
);
ioctl_none!(
/// Issue a TLBSYNC instruction.
hcl_tlbsync,
MSHV_IOCTL,
MSHV_TLBSYNC
);
}
/// The `/dev/mshv_vtl_low` device for accessing VTL0 memory.
pub struct MshvVtlLow {
file: File,
}
impl MshvVtlLow {
/// Opens the device.
pub fn new() -> Result<Self, Error> {
let file = fs_err::OpenOptions::new()
.read(true)
.write(true)
.open("/dev/mshv_vtl_low")
.map_err(Error::OpenGpa)?;
Ok(Self { file: file.into() })
}
/// Gets the device file.
pub fn get(&self) -> &File {
&self.file
}
/// The flag to set in the file offset to map guest memory as shared instead
/// of private.
pub const SHARED_MEMORY_FLAG: u64 = 1 << 63;
}
/// An open `/dev/mshv` device file.
pub struct Mshv {
file: File,
}
impl Mshv {
/// Opens the mshv device.
pub fn new() -> Result<Self, Error> {
let file = fs_err::OpenOptions::new()
.read(true)
.write(true)
.open("/dev/mshv")
.map_err(Error::OpenMshv)?;
Ok(Self { file: file.into() })
}
fn check_extension(&self, cap: u32) -> Result<bool, Error> {
// SAFETY: calling IOCTL as documented, with no special requirements.
let supported = unsafe {
hcl_check_extension(self.file.as_raw_fd(), &cap).map_err(Error::CheckExtensions)?
};
Ok(supported != 0)
}
/// Opens an mshv_vtl device file.
pub fn create_vtl(&self) -> Result<MshvVtl, Error> {
let cap = &mut 0_u8;
// SAFETY: calling IOCTL as documented, with no special requirements.
let supported =
unsafe { mshv_create_vtl(self.file.as_raw_fd(), cap).map_err(Error::CreateVTL)? };
// SAFETY: calling IOCTL as documented, with no special requirements.
let vtl_file = unsafe { File::from_raw_fd(supported) };
Ok(MshvVtl { file: vtl_file })
}
}
/// An open mshv_vtl device file.
#[derive(Debug)]
pub struct MshvVtl {
file: File,
}
impl MshvVtl {
/// Adds the VTL0 memory as a ZONE_DEVICE memory (I/O) to support DMA from the guest.
pub fn add_vtl0_memory(&self, mem_range: MemoryRange, shared: bool) -> Result<(), Error> {
let flags = if shared {
MshvVtlLow::SHARED_MEMORY_FLAG / HV_PAGE_SIZE
} else {
0
};
let ram_disposition = protocol::hcl_pfn_range_t {
start_pfn: mem_range.start_4k_gpn() | flags,
last_pfn: mem_range.end_4k_gpn(),
};
// SAFETY: calling IOCTL as documented, with no special requirements.
unsafe {
hcl_add_vtl0_memory(self.file.as_raw_fd(), &ram_disposition)
.map_err(Error::AddVtl0Memory)?;
}
Ok(())
}
}
#[cfg(guest_arch = "x86_64")]
fn is_vtl_shared_mtrr(reg: HvX64RegisterName) -> bool {
matches!(
reg,
HvX64RegisterName::MsrMtrrCap
| HvX64RegisterName::MsrMtrrDefType
| HvX64RegisterName::MsrMtrrPhysBase0
| HvX64RegisterName::MsrMtrrPhysBase1
| HvX64RegisterName::MsrMtrrPhysBase2
| HvX64RegisterName::MsrMtrrPhysBase3
| HvX64RegisterName::MsrMtrrPhysBase4
| HvX64RegisterName::MsrMtrrPhysBase5
| HvX64RegisterName::MsrMtrrPhysBase6
| HvX64RegisterName::MsrMtrrPhysBase7
| HvX64RegisterName::MsrMtrrPhysBase8
| HvX64RegisterName::MsrMtrrPhysBase9
| HvX64RegisterName::MsrMtrrPhysBaseA
| HvX64RegisterName::MsrMtrrPhysBaseB
| HvX64RegisterName::MsrMtrrPhysBaseC
| HvX64RegisterName::MsrMtrrPhysBaseD
| HvX64RegisterName::MsrMtrrPhysBaseE
| HvX64RegisterName::MsrMtrrPhysBaseF
| HvX64RegisterName::MsrMtrrPhysMask0
| HvX64RegisterName::MsrMtrrPhysMask1
| HvX64RegisterName::MsrMtrrPhysMask2
| HvX64RegisterName::MsrMtrrPhysMask3
| HvX64RegisterName::MsrMtrrPhysMask4
| HvX64RegisterName::MsrMtrrPhysMask5
| HvX64RegisterName::MsrMtrrPhysMask6
| HvX64RegisterName::MsrMtrrPhysMask7
| HvX64RegisterName::MsrMtrrPhysMask8
| HvX64RegisterName::MsrMtrrPhysMask9
| HvX64RegisterName::MsrMtrrPhysMaskA
| HvX64RegisterName::MsrMtrrPhysMaskB
| HvX64RegisterName::MsrMtrrPhysMaskC
| HvX64RegisterName::MsrMtrrPhysMaskD
| HvX64RegisterName::MsrMtrrPhysMaskE
| HvX64RegisterName::MsrMtrrPhysMaskF
| HvX64RegisterName::MsrMtrrFix64k00000
| HvX64RegisterName::MsrMtrrFix16k80000
| HvX64RegisterName::MsrMtrrFix16kA0000
| HvX64RegisterName::MsrMtrrFix4kC0000
| HvX64RegisterName::MsrMtrrFix4kC8000
| HvX64RegisterName::MsrMtrrFix4kD0000
| HvX64RegisterName::MsrMtrrFix4kD8000
| HvX64RegisterName::MsrMtrrFix4kE0000
| HvX64RegisterName::MsrMtrrFix4kE8000
| HvX64RegisterName::MsrMtrrFix4kF0000
| HvX64RegisterName::MsrMtrrFix4kF8000
)
}
/// Indicate whether reg is shared across VTLs.
///
/// This function is not complete: DR6 may or may not be shared, depending on
/// the processor type; the caller needs to check HvRegisterVsmCapabilities.
/// Some MSRs are not included here as they are not represented in
/// HvX64RegisterName, including MSR_TSC_FREQUENCY, MSR_MCG_CAP,
/// MSR_MCG_STATUS, MSR_RESET, MSR_GUEST_IDLE, and MSR_DEBUG_DEVICE_OPTIONS.
#[cfg(guest_arch = "x86_64")]
fn is_vtl_shared_reg(reg: HvX64RegisterName) -> bool {
is_vtl_shared_mtrr(reg)
|| matches!(
reg,
HvX64RegisterName::VpIndex
| HvX64RegisterName::VpRuntime
| HvX64RegisterName::TimeRefCount
| HvX64RegisterName::Rax
| HvX64RegisterName::Rbx
| HvX64RegisterName::Rcx
| HvX64RegisterName::Rdx
| HvX64RegisterName::Rsi
| HvX64RegisterName::Rdi
| HvX64RegisterName::Rbp
| HvX64RegisterName::Cr2
| HvX64RegisterName::R8
| HvX64RegisterName::R9
| HvX64RegisterName::R10
| HvX64RegisterName::R11
| HvX64RegisterName::R12
| HvX64RegisterName::R13
| HvX64RegisterName::R14
| HvX64RegisterName::R15
| HvX64RegisterName::Dr0
| HvX64RegisterName::Dr1
| HvX64RegisterName::Dr2
| HvX64RegisterName::Dr3
| HvX64RegisterName::Xmm0
| HvX64RegisterName::Xmm1
| HvX64RegisterName::Xmm2
| HvX64RegisterName::Xmm3
| HvX64RegisterName::Xmm4
| HvX64RegisterName::Xmm5
| HvX64RegisterName::Xmm6
| HvX64RegisterName::Xmm7
| HvX64RegisterName::Xmm8
| HvX64RegisterName::Xmm9
| HvX64RegisterName::Xmm10
| HvX64RegisterName::Xmm11
| HvX64RegisterName::Xmm12
| HvX64RegisterName::Xmm13
| HvX64RegisterName::Xmm14
| HvX64RegisterName::Xmm15
| HvX64RegisterName::FpMmx0
| HvX64RegisterName::FpMmx1
| HvX64RegisterName::FpMmx2
| HvX64RegisterName::FpMmx3
| HvX64RegisterName::FpMmx4
| HvX64RegisterName::FpMmx5
| HvX64RegisterName::FpMmx6
| HvX64RegisterName::FpMmx7
| HvX64RegisterName::FpControlStatus
| HvX64RegisterName::XmmControlStatus
| HvX64RegisterName::Xfem
)
}
/// Indicate whether reg is shared across VTLs.
#[cfg(guest_arch = "aarch64")]
fn is_vtl_shared_reg(reg: HvArm64RegisterName) -> bool {
use hvdef::HvArm64RegisterName;
matches!(
reg,
HvArm64RegisterName::X0
| HvArm64RegisterName::X1
| HvArm64RegisterName::X2
| HvArm64RegisterName::X3
| HvArm64RegisterName::X4
| HvArm64RegisterName::X5
| HvArm64RegisterName::X6
| HvArm64RegisterName::X7
| HvArm64RegisterName::X8
| HvArm64RegisterName::X9
| HvArm64RegisterName::X10
| HvArm64RegisterName::X11
| HvArm64RegisterName::X12
| HvArm64RegisterName::X13
| HvArm64RegisterName::X14
| HvArm64RegisterName::X15
| HvArm64RegisterName::X16
| HvArm64RegisterName::X17
| HvArm64RegisterName::X19
| HvArm64RegisterName::X20
| HvArm64RegisterName::X21
| HvArm64RegisterName::X22
| HvArm64RegisterName::X23
| HvArm64RegisterName::X24
| HvArm64RegisterName::X25
| HvArm64RegisterName::X26
| HvArm64RegisterName::X27
| HvArm64RegisterName::X28
| HvArm64RegisterName::XFp
| HvArm64RegisterName::XLr
)
}
/// The `/dev/mshv_hvcall` device for issuing hypercalls directly to the
/// hypervisor.
#[derive(Debug)]
pub struct MshvHvcall(File);
impl MshvHvcall {
/// Opens the device.
pub fn new() -> Result<Self, Error> {
let file = fs_err::OpenOptions::new()
.read(true)
.write(true)
.open("/dev/mshv_hvcall")
.map_err(Error::OpenHvcall)?;
Ok(Self(file.into()))
}
/// Set allowed hypercalls.
pub fn set_allowed_hypercalls(&self, codes: &[HypercallCode]) {
type ItemType = u64;
let item_size_bytes = size_of::<ItemType>();
let item_size_bits = item_size_bytes * 8;
let mut allow_bitmap = Vec::<ItemType>::new();
for &code in codes {
let map_index = (code.0 as usize) / item_size_bits;
if map_index >= allow_bitmap.len() {
allow_bitmap.resize(map_index + 1, 0);
}
allow_bitmap[map_index] |= (1 as ItemType) << (code.0 % item_size_bits as u16);
}
let hvcall_setup = protocol::hcl_hvcall_setup {
allow_bitmap_size: (allow_bitmap.len() * item_size_bytes) as u64,
allow_bitmap_ptr: allow_bitmap.as_ptr(),
};
// SAFETY: following the IOCTL definition.
unsafe {
hcl_hvcall_setup(self.0.as_raw_fd(), &hvcall_setup)
.expect("Hypercall setup IOCTL must be supported");
}
}
/// Accepts VTL 0 pages with no host visibility.
///
/// [`HypercallCode::HvCallAcceptGpaPages`] must be allowed.
pub fn accept_gpa_pages(
&self,
range: MemoryRange,
memory_type: hvdef::hypercall::AcceptMemoryType,
) -> Result<(), AcceptPagesError> {
const MAX_INPUT_ELEMENTS: usize = (HV_PAGE_SIZE as usize
- size_of::<hvdef::hypercall::AcceptGpaPages>())
/ size_of::<u64>();
let span = tracing::span!(tracing::Level::INFO, "accept_pages", ?range);
let _enter = span.enter();
let mut current_page = range.start() / HV_PAGE_SIZE;
let end = range.end() / HV_PAGE_SIZE;
while current_page < end {
let header = hvdef::hypercall::AcceptGpaPages {
partition_id: HV_PARTITION_ID_SELF,
page_attributes: hvdef::hypercall::AcceptPagesAttributes::new()
.with_memory_type(memory_type.0)
.with_host_visibility(HostVisibilityType::PRIVATE)
.with_vtl_set(0), // vtl protections cannot be applied for VTL 0 memory
vtl_permission_set: hvdef::hypercall::VtlPermissionSet {
vtl_permission_from_1: [0; hvdef::hypercall::HV_VTL_PERMISSION_SET_SIZE],
},
gpa_page_base: current_page,
};
let remaining_pages = end - current_page;
let count = remaining_pages.min(MAX_INPUT_ELEMENTS as u64);
// SAFETY: The input header and rep slice are the correct types for
// this hypercall. A dummy type of u8 is provided to satisfy
// the compiler for input and output rep type. The given
// input and slices are valid references while this function
// is called.
//
// The hypercall output is validated right after the hypercall is issued.
let output = unsafe {
self.hvcall_rep::<hvdef::hypercall::AcceptGpaPages, u8, u8>(
HypercallCode::HvCallAcceptGpaPages,
&header,
HvcallRepInput::Count(count as u16),
None,
)
.expect("kernel hypercall submission should always succeed")
};
output
.result()
.map_err(|err| AcceptPagesError::Hypervisor {
range: MemoryRange::from_4k_gpn_range(current_page..current_page + count),
output,
hv_error: err,
})?;
current_page += count;
assert_eq!(output.elements_processed() as u64, count);
}
Ok(())
}
/// Modifies the host visibility of the given pages.
///
/// [`HypercallCode::HvCallModifySparseGpaPageHostVisibility`] must be allowed.
//
// TODO SNP: this isn't really safe. Probably this should be an IOCTL in the
// kernel so that it can validate the page ranges are VTL0 memory.
pub fn modify_gpa_visibility(
&self,
host_visibility: HostVisibilityType,
mut gpns: &[u64],
) -> Result<(), HvError> {
const GPNS_PER_CALL: usize = (HV_PAGE_SIZE as usize
- size_of::<hvdef::hypercall::ModifySparsePageVisibility>())
/ size_of::<u64>();
while !gpns.is_empty() {
let n = gpns.len().min(GPNS_PER_CALL);
// SAFETY: The input header and rep slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let result = unsafe {
self.hvcall_rep(
HypercallCode::HvCallModifySparseGpaPageHostVisibility,
&hvdef::hypercall::ModifySparsePageVisibility {
partition_id: HV_PARTITION_ID_SELF,
host_visibility: ModifyHostVisibility::new()
.with_host_visibility(host_visibility),
reserved: 0,
},
HvcallRepInput::Elements(&gpns[..n]),
None::<&mut [u8]>,
)
.unwrap()
};
match result.result() {
Ok(()) => {
assert_eq!({ result.elements_processed() }, n);
}
Err(HvError::Timeout) => {}
Err(e) => return Err(e),
}
gpns = &gpns[result.elements_processed()..];
}
Ok(())
}
/// Given a constructed hcl_hvcall protocol object, issues an IOCTL to invoke a hypercall via
/// the direct hypercall kernel interface. This function will retry hypercalls if the hypervisor
/// times out the hypercall.
///
/// Input and output data are referenced as pointers in the call object.
///
/// `Ok(HypercallOutput)` is returned if the kernel was successful in issuing the hypercall. A
/// caller must check the return value for the result of the hypercall.
///
/// Before invoking hypercalls, a list of hypercalls that are allowed
/// has to be set with `Hcl::set_allowed_hypercalls`:
/// ```ignore
/// set_allowed_hypercalls(&[
/// hvdef::HypercallCode::HvCallCheckForIoIntercept,
/// hvdef::HypercallCode::HvCallInstallIntercept,
/// ]);
/// ```
/// # Safety
/// This function makes no guarantees that the given input header, input and output types are
/// valid for the given hypercall. It is the caller's responsibility to use the correct types
/// with the specified hypercall.
///
/// The caller must ensure that the input and output data are valid for the lifetime of this
/// call.
///
/// A caller must check the returned [HypercallOutput] for success or failure from the
/// hypervisor.
///
/// Hardware isolated VMs cannot trust the output from the hypervisor and so it must be
/// validated by the caller if needed.
unsafe fn invoke_hvcall_ioctl(
&self,
mut call_object: protocol::hcl_hvcall,
) -> Result<HypercallOutput, HvcallError> {
loop {
// SAFETY: following the IOCTL definition. The data referenced in the call
// lives as long as `self` does thus the lifetime elision doesn't contradict
// the compiler's invariants.
//
// The hypervisor is trusted to fill out the output page with a valid
// representation of an instance the output type, except in the case of hardware
// isolated VMs where the caller must validate output as needed.
unsafe {
hcl_hvcall(self.0.as_raw_fd(), &mut call_object)
.map_err(HvcallError::HypercallIoctlFailed)?;
}
if call_object.status.call_status() == Err(HvError::Timeout).into() {
// Any hypercall can timeout, even one that doesn't have reps. Continue processing
// from wherever the hypervisor left off. The rep start index isn't checked for
// validity, since it is only being used as an input to the untrusted hypervisor.
// This applies to both simple and rep hypercalls.
call_object
.control
.set_rep_start(call_object.status.elements_processed());
} else {
if call_object.control.rep_count() == 0 {
// For non-rep hypercalls, the elements processed field should be 0.
assert_eq!(call_object.status.elements_processed(), 0);
} else {
// Hardware isolated VMs cannot trust output from the hypervisor, but check for
// consistency between the number of elements processed and the expected count. A
// violation of this assertion indicates a buggy or malicious hypervisor.
assert!(
(call_object.status.result().is_ok()
&& call_object.control.rep_count()
== call_object.status.elements_processed())
|| (call_object.status.result().is_err()
&& call_object.control.rep_count()
> call_object.status.elements_processed())
);
}
return Ok(call_object.status);
}
}
}
/// Issues a non-rep hypercall to the hypervisor via the direct hypercall kernel interface.
/// This is not intended to be used directly by external callers, rather via write safe hypercall wrappers.
/// This call constructs the appropriate hypercall input control from the described parameters.
///
/// `Ok(HypercallOutput)` is returned if the kernel was successful in issuing the hypercall. A caller must check the
/// return value for the result of the hypercall.
///
/// `code` is the hypercall code.
/// `input` is the input type required by the hypercall.
/// `output` is the output type required by the hypercall.
///
/// Before invoking hypercalls, a list of hypercalls that are allowed
/// has to be set with `Hcl::set_allowed_hypercalls`:
/// ```ignore
/// set_allowed_hypercalls(&[
/// hvdef::HypercallCode::HvCallCheckForIoIntercept,
/// hvdef::HypercallCode::HvCallInstallIntercept,
/// ]);
/// ```
/// # Safety
/// This function makes no guarantees that the given input header, input and output types are valid for the
/// given hypercall. It is the caller's responsibility to use the correct types with the specified hypercall.
///
/// A caller must check the returned [HypercallOutput] for success or failure from the hypervisor.
///
/// Hardware isolated VMs cannot trust the output from the hypervisor and so it must be validated by the
/// caller if needed.
unsafe fn hvcall<I, O>(
&self,
code: HypercallCode,
input: &I,
output: &mut O,
) -> Result<HypercallOutput, HvcallError>
where
I: IntoBytes + Sized + Immutable + KnownLayout,
O: IntoBytes + FromBytes + Sized + Immutable + KnownLayout,
{
const fn assert_size<I, O>()
where
I: Sized,
O: Sized,
{
assert!(size_of::<I>() <= HV_PAGE_SIZE as usize);
assert!(size_of::<O>() <= HV_PAGE_SIZE as usize);
}
assert_size::<I, O>();
let control = hvdef::hypercall::Control::new().with_code(code.0);
let call_object = protocol::hcl_hvcall {
control,
input_data: input.as_bytes().as_ptr().cast(),
input_size: size_of::<I>(),
status: FromZeros::new_zeroed(),
output_data: output.as_bytes().as_ptr().cast(),
output_size: size_of::<O>(),
};
// SAFETY: The data referenced in the call lives as long as `self` does.
unsafe { self.invoke_hvcall_ioctl(call_object) }
}
/// Issues a rep hypercall to the hypervisor via the direct hypercall kernel
/// interface. Like the non-rep version, this is not intended to be used
/// externally other than to construct safe wrappers. This call constructs
/// the appropriate hypercall input control from the described parameters.
///
/// `Ok(HypercallOutput)` is returned if the kernel was successful in
/// issuing the hypercall. A caller must check the return value for the
/// result of the hypercall.
///
/// `code` is the hypercall code. `input_header` is the hypercall fixed
/// length input header. Variable length headers are not supported.
/// `input_rep` is the list of input elements. The length of the slice is
/// used as the rep count.
///
/// `output_rep` is the optional output rep list. A caller must check the
/// returned [HypercallOutput] for the number of valid elements in this
/// list.
///
/// # Safety
/// This function makes no guarantees that the given input header, input rep
/// and output rep types are valid for the given hypercall. It is the
/// caller's responsibility to use the correct types with the specified
/// hypercall.
///
/// A caller must check the returned [HypercallOutput] for success or
/// failure from the hypervisor and processed rep count.
///
/// Hardware isolated VMs cannot trust output from the hypervisor. This
/// routine will ensure that the hypervisor either returns success with all
/// elements processed, or returns failure with an incomplete number of
/// elements processed. Actual validation of the output elements is the
/// respsonsibility of the caller.
unsafe fn hvcall_rep<InputHeader, InputRep, O>(
&self,
code: HypercallCode,
input_header: &InputHeader,
input_rep: HvcallRepInput<'_, InputRep>,
output_rep: Option<&mut [O]>,
) -> Result<HypercallOutput, HvcallError>
where
InputHeader: IntoBytes + Sized + Immutable + KnownLayout,
InputRep: IntoBytes + Sized + Immutable + KnownLayout,
O: IntoBytes + FromBytes + Sized + Immutable + KnownLayout,
{
// Construct input buffer.
let (input, count) = match input_rep {
HvcallRepInput::Elements(e) => {
([input_header.as_bytes(), e.as_bytes()].concat(), e.len())
}
HvcallRepInput::Count(c) => (input_header.as_bytes().to_vec(), c.into()),
};
if input.len() > HV_PAGE_SIZE as usize {
return Err(HvcallError::InputParametersTooLarge);
}
if let Some(output_rep) = &output_rep {
if output_rep.as_bytes().len() > HV_PAGE_SIZE as usize {
return Err(HvcallError::OutputParametersTooLarge);
}
if count != output_rep.len() {
return Err(HvcallError::InputOutputRepListMismatch);
}
}
let (output_data, output_size) = match output_rep {
Some(output_rep) => (
output_rep.as_bytes().as_ptr().cast(),
output_rep.as_bytes().len(),
),
None => (std::ptr::null(), 0),
};
let control = hvdef::hypercall::Control::new()
.with_code(code.0)
.with_rep_count(count);
let call_object = protocol::hcl_hvcall {
control,
input_data: input.as_ptr().cast(),
input_size: input.len(),
status: HypercallOutput::new(),
output_data,
output_size,
};
// SAFETY: The data referenced in the call lives as long as `self` does.
unsafe { self.invoke_hvcall_ioctl(call_object) }
}
/// Issues a non-rep hypercall with variable input to the hypervisor via the direct hypercall kernel interface.
/// This is not intended to be used directly by external callers, rather via write safe hypercall wrappers.
/// This call constructs the appropriate hypercall input control from the described parameters.
///
/// `Ok(HypercallOutput)` is returned if the kernel was successful in issuing the hypercall. A caller must check the
/// return value for the result of the hypercall.
///
/// `code` is the hypercall code.
/// `input` is the input type required by the hypercall.
/// `output` is the output type required by the hypercall.
/// `variable_input` is the contents of the variable input to the hypercall. The length must be a multiple of 8 bytes.
///
/// # Safety
/// This function makes no guarantees that the given input header, input and output types are valid for the
/// given hypercall. It is the caller's responsibility to use the correct types with the specified hypercall.
///
/// A caller must check the returned [HypercallOutput] for success or failure from the hypervisor.
///
/// Hardware isolated VMs cannot trust the output from the hypervisor and so it must be validated by the
/// caller if needed.
unsafe fn hvcall_var<I, O>(
&self,
code: HypercallCode,
input: &I,
variable_input: &[u8],
output: &mut O,
) -> Result<HypercallOutput, HvcallError>
where
I: IntoBytes + Sized + Immutable + KnownLayout,
O: IntoBytes + FromBytes + Sized + Immutable + KnownLayout,
{
const fn assert_size<I, O>()
where
I: Sized,
O: Sized,
{
assert!(size_of::<I>() <= HV_PAGE_SIZE as usize);
assert!(size_of::<O>() <= HV_PAGE_SIZE as usize);
}
assert_size::<I, O>();
assert!(variable_input.len() % 8 == 0);
let input = [input.as_bytes(), variable_input].concat();
if input.len() > HV_PAGE_SIZE as usize {
return Err(HvcallError::InputParametersTooLarge);
}
let control = hvdef::hypercall::Control::new()
.with_code(code.0)
.with_variable_header_size(variable_input.len() / 8);
let call_object = protocol::hcl_hvcall {
control,
input_data: input.as_bytes().as_ptr().cast(),
input_size: input.len(),
status: FromZeros::new_zeroed(),
output_data: output.as_bytes().as_ptr().cast(),
output_size: size_of::<O>(),
};
// SAFETY: The data referenced in the call lives as long as `self` does.
unsafe { self.invoke_hvcall_ioctl(call_object) }
}
/// Sets the VTL protection mask for the specified memory range.
///
/// [`HypercallCode::HvCallModifyVtlProtectionMask`] must be allowed.
pub fn modify_vtl_protection_mask(
&self,
range: MemoryRange,
map_flags: HvMapGpaFlags,
target_vtl: HvInputVtl,
) -> Result<(), ApplyVtlProtectionsError> {
let header = hvdef::hypercall::ModifyVtlProtectionMask {
partition_id: HV_PARTITION_ID_SELF,
map_flags,
target_vtl,
reserved: [0; 3],
};
const MAX_INPUT_ELEMENTS: usize = (HV_PAGE_SIZE as usize
- size_of::<hvdef::hypercall::ModifyVtlProtectionMask>())
/ size_of::<u64>();
let span = tracing::span!(tracing::Level::INFO, "modify_vtl_protection_mask", ?range);
let _enter = span.enter();
let start = range.start() / HV_PAGE_SIZE;
let end = range.end() / HV_PAGE_SIZE;
// Reuse the same vector for every hypercall.
let mut pages = Vec::new();
for current_page in (start..end).step_by(MAX_INPUT_ELEMENTS) {
let remaining_pages = end - current_page;
let count = remaining_pages.min(MAX_INPUT_ELEMENTS as u64);
pages.clear();
pages.extend(current_page..current_page + count);
// SAFETY: The input header and rep slice are the correct types for this hypercall. A dummy type of u8 is
// provided to satisfy the compiler for output rep type. The given input and slices are valid
// references while this function is called.
//
// The hypercall output is validated right after the hypercall is issued.
let output = unsafe {
self.hvcall_rep::<hvdef::hypercall::ModifyVtlProtectionMask, u64, u8>(
HypercallCode::HvCallModifyVtlProtectionMask,
&header,
HvcallRepInput::Elements(pages.as_slice()),
None,
)
.expect("kernel hypercall submission should always succeed")
};
output.result().map_err(|err| {
let page_range =
*pages.first().expect("not empty")..*pages.last().expect("not empty") + 1;
ApplyVtlProtectionsError::Hypervisor {
range: MemoryRange::from_4k_gpn_range(page_range),
output,
hv_error: err,
vtl: target_vtl,
}
})?;
assert_eq!(output.elements_processed() as u64, count);
}
Ok(())
}
/// Get a single VP register for the given VTL via hypercall.
fn get_vp_register_for_vtl_inner(
&self,
target_vtl: HvInputVtl,
name: HvRegisterName,
) -> Result<HvRegisterValue, Error> {
let header = hvdef::hypercall::GetSetVpRegisters {
partition_id: HV_PARTITION_ID_SELF,
vp_index: HV_VP_INDEX_SELF,
target_vtl,
rsvd: [0; 3],
};
let mut output = [HvRegisterValue::new_zeroed()];
// SAFETY: The input header and rep slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.hvcall_rep(
HypercallCode::HvCallGetVpRegisters,
&header,
HvcallRepInput::Elements(&[name]),
Some(&mut output),
)
.expect("get_vp_register hypercall should not fail")
};
// Status must be success with 1 rep completed
status
.result()
.map_err(|err| Error::GetVpRegisterHypercall {
reg: name.into(),
err,
})?;
assert_eq!(status.elements_processed(), 1);
Ok(output[0])
}
/// Get a single VP register for the given VTL via hypercall. Only a select
/// set of registers are supported; others will cause a panic.
#[cfg(guest_arch = "x86_64")]
pub fn get_vp_register_for_vtl(
&self,
vtl: HvInputVtl,
name: HvX64RegisterName,
) -> Result<HvRegisterValue, Error> {
match vtl.target_vtl().unwrap() {
None | Some(Vtl::Vtl2) => {
assert!(matches!(
name,
HvX64RegisterName::GuestVsmPartitionConfig
| HvX64RegisterName::VsmPartitionConfig
| HvX64RegisterName::VsmPartitionStatus
| HvX64RegisterName::VsmCapabilities
| HvX64RegisterName::TimeRefCount
| HvX64RegisterName::VsmVpSecureConfigVtl0
| HvX64RegisterName::VsmVpSecureConfigVtl1
));
}
Some(Vtl::Vtl1) => {
todo!("TODO: allowed registers for VTL1");
}
Some(Vtl::Vtl0) => {
// Only VTL-private registers can go through this path.
// VTL-shared registers have to go through the kernel (either
// via the CPU context page or via the dedicated ioctl), as
// they may require special handling there.
//
// Register access should go through the register page if
// possible (as a performance optimization). In practice,
// registers that are normally available on the register page
// are handled here only when it is unavailable (e.g., running
// in WHP).
assert!(!is_vtl_shared_reg(name));
}
}
self.get_vp_register_for_vtl_inner(vtl, name.into())
}
/// Get a single VP register for the given VTL via hypercall. Only a select
/// set of registers are supported; others will cause a panic.
#[cfg(guest_arch = "aarch64")]
pub fn get_vp_register_for_vtl(
&self,
vtl: HvInputVtl,
name: HvArm64RegisterName,
) -> Result<HvRegisterValue, Error> {
match vtl.target_vtl().unwrap() {
None | Some(Vtl::Vtl2) => {
assert!(matches!(
name,
HvArm64RegisterName::GuestVsmPartitionConfig
| HvArm64RegisterName::VsmPartitionConfig
| HvArm64RegisterName::VsmPartitionStatus
| HvArm64RegisterName::VsmCapabilities
| HvArm64RegisterName::TimeRefCount
| HvArm64RegisterName::VsmVpSecureConfigVtl0
| HvArm64RegisterName::VsmVpSecureConfigVtl1
| HvArm64RegisterName::PrivilegesAndFeaturesInfo
));
}
Some(Vtl::Vtl1) => {
// TODO: allowed registers for VTL1
todo!();
}
Some(Vtl::Vtl0) => {
// Only VTL-private registers can go through this path.
// VTL-shared registers have to go through the kernel (either
// via the CPU context page or via the dedicated ioctl), as
// they may require special handling there.
assert!(!is_vtl_shared_reg(name));
}
}
self.get_vp_register_for_vtl_inner(vtl, name.into())
}
}
/// The HCL device and collection of fds.
#[derive(Debug)]
pub struct Hcl {
mshv_hvcall: MshvHvcall,
mshv_vtl: MshvVtl,
vps: Vec<HclVp>,
supports_vtl_ret_action: bool,
supports_register_page: bool,
dr6_shared: bool,
isolation: IsolationType,
snp_register_bitmap: [u8; 64],
sidecar: Option<SidecarClient>,
}
/// The isolation type for a partition.
// TODO: Add guest_arch cfgs.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum IsolationType {
/// No isolation.
None,
/// Hyper-V software isolation.
Vbs,
/// AMD SNP.
Snp,
/// Intel TDX.
Tdx,
}
impl IsolationType {
/// Returns true if the isolation type is not `None`.
pub fn is_isolated(&self) -> bool {
!matches!(self, Self::None)
}
/// Returns whether the isolation type is hardware-backed.
pub fn is_hardware_isolated(&self) -> bool {
matches!(self, Self::Snp | Self::Tdx)
}
}
impl Hcl {
/// Returns true if DR6 is a shared register on this processor.
pub fn dr6_shared(&self) -> bool {
self.dr6_shared
}
}
#[derive(Debug)]
struct HclVp {
state: Mutex<VpState>,
run: MappedPage<hcl_run>,
backing: BackingState,
}
#[derive(Debug)]
enum BackingState {
Mshv {
reg_page: Option<MappedPage<HvX64RegisterPage>>,
},
Snp {
vmsa: VtlArray<MappedPage<SevVmsa>, 2>,
},
Tdx {
vtl0_apic_page: MappedPage<ApicPage>,
vtl1_apic_page: MemoryBlock,
},
}
#[derive(Debug)]
enum VpState {
Running(Pthread),
NotRunning,
}
impl HclVp {
fn new(
hcl: &Hcl,
vp: u32,
map_reg_page: bool,
isolation_type: IsolationType,
private_dma_client: Option<&Arc<dyn DmaClient>>,
) -> Result<Self, Error> {
let fd = &hcl.mshv_vtl.file;
let run: MappedPage<hcl_run> =
MappedPage::new(fd, vp as i64).map_err(|e| Error::MmapVp(e, None))?;
// Block proxied interrupts on all vectors by default. The mask will be
// relaxed as the guest runs.
//
// This is only used on CVMs. Skip it otherwise, since run page accesses
// will fault on VPs that are still in the sidecar kernel.
if isolation_type.is_hardware_isolated() {
// SAFETY: `proxy_irr_blocked` is not accessed by any other VPs/kernel at this point (`HclVp` creation)
// so we know we have exclusive access.
let proxy_irr_blocked = unsafe { &mut (*run.as_ptr()).proxy_irr_blocked };
proxy_irr_blocked.fill(!0);
}
let backing = match isolation_type {
IsolationType::None | IsolationType::Vbs => BackingState::Mshv {
reg_page: if map_reg_page {
Some(
MappedPage::new(fd, HCL_REG_PAGE_OFFSET | vp as i64)
.map_err(Error::MmapRegPage)?,
)
} else {
None
},
},
IsolationType::Snp => {
let vmsa_vtl0 = MappedPage::new(fd, HCL_VMSA_PAGE_OFFSET | vp as i64)
.map_err(|e| Error::MmapVp(e, Some(Vtl::Vtl0)))?;
let vmsa_vtl1 = MappedPage::new(fd, HCL_VMSA_GUEST_VSM_PAGE_OFFSET | vp as i64)
.map_err(|e| Error::MmapVp(e, Some(Vtl::Vtl1)))?;
BackingState::Snp {
vmsa: [vmsa_vtl0, vmsa_vtl1].into(),
}
}
IsolationType::Tdx => BackingState::Tdx {
vtl0_apic_page: MappedPage::new(fd, MSHV_APIC_PAGE_OFFSET | vp as i64)
.map_err(|e| Error::MmapVp(e, Some(Vtl::Vtl0)))?,
vtl1_apic_page: private_dma_client
.ok_or(Error::MissingPrivateMemory)?
.allocate_dma_buffer(HV_PAGE_SIZE as usize)
.map_err(Error::AllocVp)?,
},
};
Ok(Self {
state: Mutex::new(VpState::NotRunning),
run,
backing,
})
}
}
/// Object used to run and to access state for a specific VP.
pub struct ProcessorRunner<'a, T: Backing<'a>> {
hcl: &'a Hcl,
vp: &'a HclVp,
sidecar: Option<SidecarVp<'a>>,
deferred_actions: Option<RegisteredDeferredActions<'a>>,
run: &'a UnsafeCell<hcl_run>,
intercept_message: &'a UnsafeCell<HvMessage>,
state: T,
}
/// An error returned by [`Hcl::runner`].
#[derive(Debug, Error)]
pub enum NoRunner {
/// The partition is for a different isolation type.
#[error("mismatched isolation type")]
MismatchedIsolation,
/// A sidecar VP was requested, but no sidecar was provided.
#[error("missing sidecar")]
MissingSidecar,
/// The sidecar VP could not be contacted.
#[error("sidecar communication error")]
Sidecar(#[source] sidecar_client::SidecarError),
}
/// An isolation-type-specific backing for a processor runner.
#[expect(private_bounds)]
pub trait Backing<'a>: BackingPrivate<'a> {}
impl<'a, T: BackingPrivate<'a>> Backing<'a> for T {}
mod private {
use super::Error;
use super::Hcl;
use super::HclVp;
use super::NoRunner;
use super::ProcessorRunner;
use crate::GuestVtl;
use hvdef::HvRegisterName;
use hvdef::HvRegisterValue;
use sidecar_client::SidecarVp;
pub(super) trait BackingPrivate<'a>: Sized {
fn new(vp: &'a HclVp, sidecar: Option<&SidecarVp<'a>>, hcl: &Hcl)
-> Result<Self, NoRunner>;
fn try_set_reg(
runner: &mut ProcessorRunner<'a, Self>,
vtl: GuestVtl,
name: HvRegisterName,
value: HvRegisterValue,
) -> Result<bool, Error>;
fn must_flush_regs_on(runner: &ProcessorRunner<'a, Self>, name: HvRegisterName) -> bool;
fn try_get_reg(
runner: &ProcessorRunner<'a, Self>,
vtl: GuestVtl,
name: HvRegisterName,
) -> Result<Option<HvRegisterValue>, Error>;
fn flush_register_page(runner: &mut ProcessorRunner<'a, Self>);
}
}
impl<'a, T: Backing<'a>> Drop for ProcessorRunner<'a, T> {
fn drop(&mut self) {
self.flush_deferred_state();
drop(self.deferred_actions.take());
let old_state = std::mem::replace(&mut *self.vp.state.lock(), VpState::NotRunning);
assert!(matches!(old_state, VpState::Running(thread) if thread == Pthread::current()));
}
}
impl<'a, T: Backing<'a>> ProcessorRunner<'a, T> {
/// Flushes any deferred state. Must be called if preparing the partition
/// for save/restore (servicing).
pub fn flush_deferred_state(&mut self) {
T::flush_register_page(self);
if let Some(actions) = &mut self.deferred_actions {
actions.flush();
}
}
}
impl<'a, T: Backing<'a>> ProcessorRunner<'a, T> {
// Registers that are shared between VTLs need to be handled by the kernel
// as they may require special handling there. set_reg and get_reg will
// handle these registers using a dedicated ioctl, instead of the general-
// purpose Set/GetVpRegisters hypercalls.
#[cfg(guest_arch = "x86_64")]
fn is_kernel_managed(&self, name: HvX64RegisterName) -> bool {
if name == HvX64RegisterName::Dr6 {
self.hcl.dr6_shared()
} else {
is_vtl_shared_reg(name)
}
}
#[cfg(guest_arch = "aarch64")]
fn is_kernel_managed(&self, name: HvArm64RegisterName) -> bool {
is_vtl_shared_reg(name)
}
fn set_reg(&mut self, vtl: GuestVtl, regs: &[HvRegisterAssoc]) -> Result<(), Error> {
if regs.is_empty() {
return Ok(());
}
if let Some(sidecar) = &mut self.sidecar {
sidecar
.set_vp_registers(vtl.into(), regs)
.map_err(Error::Sidecar)?;
} else {
// TODO: group up to MSHV_VP_MAX_REGISTERS regs. The kernel
// currently has a bug where it only supports one register at a
// time. Once that's fixed, this code could set a group of
// registers in one ioctl.
for reg in regs {
let hc_regs = &mut [HvRegisterAssoc {
name: reg.name,
pad: [0; 3],
value: reg.value,
}];
if self.is_kernel_managed(reg.name.into()) {
let hv_vp_register_args = mshv_vp_registers {
count: 1,
regs: hc_regs.as_mut_ptr(),
};
// SAFETY: ioctl call with correct types.
unsafe {
hcl_set_vp_register(
self.hcl.mshv_vtl.file.as_raw_fd(),
&hv_vp_register_args,
)
.map_err(Error::SetVpRegister)?;
}
} else {
let hc_regs = [HvRegisterAssoc {
name: reg.name,
pad: [0; 3],
value: reg.value,
}];
self.set_vp_registers_hvcall_inner(vtl.into(), &hc_regs)
.map_err(Error::SetRegisters)?;
}
}
}
Ok(())
}
fn get_reg(&mut self, vtl: GuestVtl, regs: &mut [HvRegisterAssoc]) -> Result<(), Error> {
if regs.is_empty() {
return Ok(());
}
if let Some(sidecar) = &mut self.sidecar {
sidecar
.get_vp_registers(vtl.into(), regs)
.map_err(Error::Sidecar)?;
} else {
// TODO: group up to MSHV_VP_MAX_REGISTERS regs. The kernel
// currently has a bug where it only supports one register at a
// time. Once that's fixed, this code could set a group of
// registers in one ioctl.
for reg in regs {
if self.is_kernel_managed(reg.name.into()) {
let mut mshv_vp_register_args = mshv_vp_registers {
count: 1,
regs: reg,
};
// SAFETY: we know that our file is a vCPU fd, we know the kernel will only read the
// correct amount of memory from our pointer, and we verify the return result.
unsafe {
hcl_get_vp_register(
self.hcl.mshv_vtl.file.as_raw_fd(),
&mut mshv_vp_register_args,
)
.map_err(Error::GetVpRegister)?;
}
} else {
reg.value = self
.hcl
.mshv_hvcall
.get_vp_register_for_vtl(vtl.into(), reg.name.into())?;
}
}
}
Ok(())
}
/// Clears the cancel flag so that the VP can be run again.
pub fn clear_cancel(&mut self) {
if !self.is_sidecar() {
// SAFETY: self.run is mapped, and the cancel field is atomically
// accessed by everyone.
let cancel = unsafe { &*(&raw mut (*self.run.get()).cancel).cast::<AtomicU32>() };
cancel.store(0, Ordering::SeqCst);
}
}
/// Set the halted state of the VP. If `true`, then `run()` will not
/// actually run the VP but will just wait for a cancel request or signal.
pub fn set_halted(&mut self, halted: bool) {
// SAFETY: the `flags` field of the run page will not be concurrently
// updated.
let flags = unsafe { &mut (*self.run.get()).flags };
if halted {
*flags |= protocol::MSHV_VTL_RUN_FLAG_HALTED
} else {
*flags &= !protocol::MSHV_VTL_RUN_FLAG_HALTED
}
}
/// Gets the proxied interrupt request bitmap for VTL 0 from the hypervisor.
pub fn proxy_irr_vtl0(&mut self) -> Option<[u32; 8]> {
// SAFETY: the `scan_proxy_irr` and `proxy_irr` fields of the run page
// are concurrently updated by the kernel on multiple processors. They
// are accessed atomically everywhere.
unsafe {
let scan_proxy_irr = &*((&raw mut (*self.run.get()).scan_proxy_irr).cast::<AtomicU8>());
let proxy_irr = &*((&raw mut (*self.run.get()).proxy_irr).cast::<[AtomicU32; 8]>());
if scan_proxy_irr.load(Ordering::Acquire) == 0 {
return None;
}
scan_proxy_irr.store(0, Ordering::SeqCst);
let mut r = [0; 8];
for (irr, r) in proxy_irr.iter().zip(r.iter_mut()) {
if irr.load(Ordering::Relaxed) != 0 {
*r = irr.swap(0, Ordering::Relaxed);
}
}
Some(r)
}
}
/// Update the `proxy_irr_blocked` for VTL 0 in the run page
pub fn update_proxy_irr_filter_vtl0(&mut self, irr_filter: &[u32; 8]) {
// SAFETY: `proxy_irr_blocked` is accessed by current VP only, but could
// be concurrently accessed by kernel too, hence accessing as Atomic
let proxy_irr_blocked = unsafe {
&mut *((&raw mut (*self.run.get()).proxy_irr_blocked).cast::<[AtomicU32; 8]>())
};
// `irr_filter` bitmap has bits set for all allowed vectors (i.e. SINT and device interrupts)
// Replace current `proxy_irr_blocked` with the given `irr_filter` bitmap.
// By default block all (i.e. set all), and only allow (unset) given vectors from `irr_filter`.
for (filter, irr) in proxy_irr_blocked.iter_mut().zip(irr_filter.iter()) {
filter.store(!irr, Ordering::Relaxed);
tracing::debug!(irr, "update_proxy_irr_filter");
}
}
/// Gets the proxy_irr_exit bitmask for VTL 0. This mask ensures that
/// the masked interrupts always exit to user-space, and cannot
/// be injected in the kernel. Interrupts matching this condition
/// will be left on the proxy_irr field.
pub fn proxy_irr_exit_mut_vtl0(&mut self) -> &mut [u32; 8] {
// SAFETY: The `proxy_irr_exit` field of the run page will not be concurrently updated.
unsafe { &mut (*self.run.get()).proxy_irr_exit }
}
/// Gets the current offload_flags from the run page.
pub fn offload_flags_mut(&mut self) -> &mut hcl_intr_offload_flags {
// SAFETY: The `offload_flags` field of the run page will not be concurrently updated.
unsafe { &mut (*self.run.get()).offload_flags }
}
/// Runs the VP via the sidecar kernel.
pub fn run_sidecar(&mut self) -> Result<SidecarRun<'_, 'a>, Error> {
self.sidecar.as_mut().unwrap().run().map_err(Error::Sidecar)
}
/// Run the following VP until an exit, error, or interrupt (cancel or
/// signal) occurs.
///
/// Returns `Ok(true)` if there is an exit to process, `Ok(false)` if there
/// was a signal or cancel request.
pub fn run(&mut self) -> Result<bool, Error> {
assert!(self.sidecar.is_none());
// Apply any deferred actions to the run page.
if let Some(actions) = &mut self.deferred_actions {
debug_assert!(self.hcl.supports_vtl_ret_action);
// SAFETY: there are no concurrent accesses to the deferred action
// slots.
let mut slots = unsafe { DeferredActionSlots::new(self.run) };
actions.move_to_slots(&mut slots);
};
// N.B. cpu_context and exit_context are mutated by this call.
//
// SAFETY: no safety requirements for this ioctl.
let r = unsafe { hcl_return_to_lower_vtl(self.hcl.mshv_vtl.file.as_raw_fd()) };
let has_intercept = match r {
Ok(_) => true,
Err(nix::errno::Errno::EINTR) => false,
Err(err) => return Err(Error::ReturnToLowerVtl(err)),
};
Ok(has_intercept)
}
/// Gets a reference to enter mode value, used by the kernel to specify the
/// mode used when entering a lower VTL.
pub fn enter_mode(&mut self) -> Option<&mut EnterModes> {
if self.sidecar.is_some() {
None
} else {
// SAFETY: self.run is mapped, and the mode field can only be mutated or accessed by
// this object (or the kernel while `run` is called).
Some(unsafe { &mut (*self.run.get()).mode })
}
}
/// Returns a reference to the exit message from the last exit.
pub fn exit_message(&self) -> &HvMessage {
// SAFETY: the exit message will not be concurrently accessed by the
// kernel while this VP is in VTL2.
unsafe { &*self.intercept_message.get() }
}
/// Returns whether this is a sidecar VP.
pub fn is_sidecar(&self) -> bool {
self.sidecar.is_some()
}
}
impl<'a, T: Backing<'a>> ProcessorRunner<'a, T> {
fn get_vp_registers_inner<R: Copy + Into<HvRegisterName>>(
&mut self,
vtl: GuestVtl,
names: &[R],
values: &mut [HvRegisterValue],
) -> Result<(), Error> {
assert_eq!(names.len(), values.len());
let mut assoc = Vec::new();
let mut offset = Vec::new();
for (i, (&name, value)) in names.iter().zip(values.iter_mut()).enumerate() {
if let Some(v) = T::try_get_reg(self, vtl, name.into())? {
*value = v;
} else {
assoc.push(HvRegisterAssoc {
name: name.into(),
pad: Default::default(),
value: FromZeros::new_zeroed(),
});
offset.push(i);
}
}
self.get_reg(vtl, &mut assoc)?;
for (&i, assoc) in offset.iter().zip(&assoc) {
values[i] = assoc.value;
}
Ok(())
}
/// Get the following register on the current VP.
///
/// This will fail for registers that are in the mmapped CPU context, i.e.
/// registers that are shared between VTL0 and VTL2.
pub fn get_vp_register(
&mut self,
vtl: GuestVtl,
#[cfg(guest_arch = "x86_64")] name: HvX64RegisterName,
#[cfg(guest_arch = "aarch64")] name: HvArm64RegisterName,
) -> Result<HvRegisterValue, Error> {
let mut value = [0u64.into(); 1];
self.get_vp_registers_inner(vtl, &[name], &mut value)?;
Ok(value[0])
}
/// Get the following VP registers on the current VP.
///
/// # Panics
/// Panics if `names.len() != values.len()`.
pub fn get_vp_registers(
&mut self,
vtl: GuestVtl,
#[cfg(guest_arch = "x86_64")] names: &[HvX64RegisterName],
#[cfg(guest_arch = "aarch64")] names: &[HvArm64RegisterName],
values: &mut [HvRegisterValue],
) -> Result<(), Error> {
self.get_vp_registers_inner(vtl, names, values)
}
/// Set the following register on the current VP.
///
/// This will fail for registers that are in the mmapped CPU context, i.e.
/// registers that are shared between VTL0 and VTL2.
pub fn set_vp_register(
&mut self,
vtl: GuestVtl,
#[cfg(guest_arch = "x86_64")] name: HvX64RegisterName,
#[cfg(guest_arch = "aarch64")] name: HvArm64RegisterName,
value: HvRegisterValue,
) -> Result<(), Error> {
self.set_vp_registers(vtl, [(name, value)])
}
/// Sets a set of VP registers.
pub fn set_vp_registers<I>(&mut self, vtl: GuestVtl, values: I) -> Result<(), Error>
where
I: IntoIterator,
I::Item: Into<HvRegisterAssoc> + Clone,
{
let mut assoc = Vec::new();
for HvRegisterAssoc { name, value, .. } in values.into_iter().map(Into::into) {
if !assoc.is_empty() && T::must_flush_regs_on(self, name) {
self.set_reg(vtl, &assoc)?;
assoc.clear();
}
if !T::try_set_reg(self, vtl, name, value)? {
assoc.push(HvRegisterAssoc {
name,
pad: Default::default(),
value,
});
}
}
if !assoc.is_empty() {
self.set_reg(vtl, &assoc)?;
}
Ok(())
}
fn set_vp_registers_hvcall_inner(
&mut self,
vtl: Vtl,
registers: &[HvRegisterAssoc],
) -> Result<(), HvError> {
let header = hvdef::hypercall::GetSetVpRegisters {
partition_id: HV_PARTITION_ID_SELF,
vp_index: HV_VP_INDEX_SELF,
target_vtl: vtl.into(),
rsvd: [0; 3],
};
tracing::trace!(?registers, "HvCallSetVpRegisters rep");
// SAFETY: The input header and rep slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.hcl
.mshv_hvcall
.hvcall_rep::<hvdef::hypercall::GetSetVpRegisters, HvRegisterAssoc, u8>(
HypercallCode::HvCallSetVpRegisters,
&header,
HvcallRepInput::Elements(registers),
None,
)
.expect("set_vp_registers hypercall should not fail")
};
// Status must be success
status.result()?;
Ok(())
}
/// Sets the following registers on the current VP and given VTL using a
/// direct hypercall.
///
/// This should not be used on the fast path. Therefore only a select set of
/// registers are supported, and others will cause a panic.
///
/// This function can be used with VTL2 as a target.
pub fn set_vp_registers_hvcall<I>(&mut self, vtl: Vtl, values: I) -> Result<(), HvError>
where
I: IntoIterator,
I::Item: Into<HvRegisterAssoc> + Clone,
{
let registers: Vec<HvRegisterAssoc> = values.into_iter().map(Into::into).collect();
assert!(registers.iter().all(
|HvRegisterAssoc {
name,
pad: _,
value: _,
}| matches!(
(*name).into(),
HvX64RegisterName::PendingEvent0
| HvX64RegisterName::PendingEvent1
| HvX64RegisterName::Sipp
| HvX64RegisterName::Sifp
| HvX64RegisterName::Ghcb
| HvX64RegisterName::VsmPartitionConfig
| HvX64RegisterName::VsmVpWaitForTlbLock
| HvX64RegisterName::VsmVpSecureConfigVtl0
| HvX64RegisterName::VsmVpSecureConfigVtl1
)
));
self.set_vp_registers_hvcall_inner(vtl, ®isters)
}
/// Sets the VTL that should be returned to when underhill exits
pub fn set_exit_vtl(&mut self, vtl: GuestVtl) {
// SAFETY: self.run is mapped, and the target_vtl field can only be
// mutated or accessed by this object and only before the kernel is
// invoked during `run`
unsafe { (*self.run.get()).target_vtl = vtl.into() }
}
}
impl Hcl {
/// Returns a new HCL instance.
pub fn new(isolation: IsolationType, sidecar: Option<SidecarClient>) -> Result<Hcl, Error> {
static SIGNAL_HANDLER_INIT: Once = Once::new();
// SAFETY: The signal handler does not perform any actions that are forbidden
// for signal handlers to perform, as it performs nothing.
SIGNAL_HANDLER_INIT.call_once(|| unsafe {
signal_hook::low_level::register(libc::SIGRTMIN(), || {
// Do nothing, the ioctl will now return with EINTR.
})
.unwrap();
});
// Open both mshv fds
let mshv_fd = Mshv::new()?;
// Validate the hypervisor's advertised isolation type matches the
// requested isolation type. In CVM scenarios, this is not trusted, so
// we still need the isolation type from the caller.
//
// FUTURE: the kernel driver should probably tell us this, especially
// since the kernel ABI is different for different isolation types.
let supported_isolation = if cfg!(guest_arch = "x86_64") {
// xtask-fmt allow-target-arch cpu-intrinsic
#[cfg(target_arch = "x86_64")]
{
let result = safe_intrinsics::cpuid(
hvdef::HV_CPUID_FUNCTION_MS_HV_ISOLATION_CONFIGURATION,
0,
);
match result.ebx & 0xF {
0 => IsolationType::None,
1 => IsolationType::Vbs,
2 => IsolationType::Snp,
3 => IsolationType::Tdx,
ty => panic!("unknown isolation type {ty:#x}"),
}
}
// xtask-fmt allow-target-arch cpu-intrinsic
#[cfg(not(target_arch = "x86_64"))]
{
unreachable!()
}
} else {
IsolationType::None
};
if isolation != supported_isolation {
return Err(Error::MismatchedIsolation {
supported: supported_isolation,
requested: isolation,
});
}
let supports_vtl_ret_action = mshv_fd.check_extension(HCL_CAP_VTL_RETURN_ACTION)?;
let supports_register_page = mshv_fd.check_extension(HCL_CAP_REGISTER_PAGE)?;
let dr6_shared = mshv_fd.check_extension(HCL_CAP_DR6_SHARED)?;
tracing::debug!(
supports_vtl_ret_action,
supports_register_page,
"HCL capabilities",
);
let vtl_fd = mshv_fd.create_vtl()?;
// Open the hypercall pseudo-device
let mshv_hvcall = MshvHvcall::new()?;
// Override certain features for hardware isolated VMs.
// TODO: vtl return actions are inhibited for hardware isolated VMs because they currently
// are a pessimization since interrupt handling (and synic handling) are all done from
// within VTL2. Future vtl return actions may be different, requiring granular handling.
let supports_vtl_ret_action = supports_vtl_ret_action && !isolation.is_hardware_isolated();
let supports_register_page = supports_register_page && !isolation.is_hardware_isolated();
let snp_register_bitmap = [0u8; 64];
Ok(Hcl {
mshv_hvcall,
mshv_vtl: vtl_fd,
vps: Vec::new(),
supports_vtl_ret_action,
supports_register_page,
dr6_shared,
isolation,
snp_register_bitmap,
sidecar,
})
}
/// Set allowed hypercalls.
pub fn set_allowed_hypercalls(&self, codes: &[HypercallCode]) {
self.mshv_hvcall.set_allowed_hypercalls(codes)
}
/// Initializes SNP register tweak bitmap
pub fn set_snp_register_bitmap(&mut self, register_bitmap: [u8; 64]) {
self.snp_register_bitmap = register_bitmap;
}
/// Adds `vp_count` VPs.
pub fn add_vps(
&mut self,
vp_count: u32,
private_pool: Option<&Arc<dyn DmaClient>>,
) -> Result<(), Error> {
self.vps = (0..vp_count)
.map(|vp| {
HclVp::new(
self,
vp,
self.supports_register_page,
self.isolation,
private_pool,
)
})
.collect::<Result<_, _>>()?;
Ok(())
}
/// Registers with the hypervisor for an intercept.
pub fn register_intercept(
&self,
intercept_type: HvInterceptType,
access_type_mask: u32,
intercept_parameters: HvInterceptParameters,
) -> Result<(), HvError> {
let intercept_info = hvdef::hypercall::InstallIntercept {
partition_id: HV_PARTITION_ID_SELF,
access_type_mask,
intercept_type,
intercept_parameters,
};
// SAFETY: calling hypercall with appropriate input and output.
unsafe {
self.mshv_hvcall
.hvcall(
HypercallCode::HvCallInstallIntercept,
&intercept_info,
&mut (),
)
.unwrap()
.result()
}
}
/// Returns the base CPU that manages the given sidecar VP.
pub fn sidecar_base_cpu(&self, vp_index: u32) -> Option<u32> {
Some(self.sidecar.as_ref()?.base_cpu(vp_index))
}
/// Create a VP runner for the given partition.
pub fn runner<'a, T: Backing<'a>>(
&'a self,
vp_index: u32,
use_sidecar: bool,
) -> Result<ProcessorRunner<'a, T>, NoRunner> {
let vp = &self.vps[vp_index as usize];
let sidecar = if use_sidecar {
Some(
self.sidecar
.as_ref()
.ok_or(NoRunner::MissingSidecar)?
.vp(vp_index),
)
} else {
None
};
let state = T::new(vp, sidecar.as_ref(), self)?;
// Set this thread as the runner.
let VpState::NotRunning =
std::mem::replace(&mut *vp.state.lock(), VpState::Running(Pthread::current()))
else {
panic!("another runner already exists")
};
let actions = if sidecar.is_none() && self.supports_vtl_ret_action {
Some(register_deferred_actions(self))
} else {
None
};
// SAFETY: The run page is guaranteed to be mapped and valid.
// While the exit message might not be filled in yet we're only computing its address.
let intercept_message = unsafe {
&*sidecar.as_ref().map_or(
std::ptr::addr_of!((*vp.run.as_ptr()).exit_message).cast(),
|s| s.intercept_message().cast(),
)
};
Ok(ProcessorRunner {
hcl: self,
vp,
deferred_actions: actions,
run: vp.run.as_ref(),
intercept_message,
state,
sidecar,
})
}
/// Trigger the following interrupt request.
pub fn request_interrupt(
&self,
interrupt_control: hvdef::HvInterruptControl,
destination_address: u64,
requested_vector: u32,
target_vtl: GuestVtl,
) -> Result<(), Error> {
tracing::trace!(
?interrupt_control,
destination_address,
requested_vector,
"requesting interrupt"
);
assert!(!self.isolation.is_hardware_isolated());
let request = AssertVirtualInterrupt {
partition_id: HV_PARTITION_ID_SELF,
interrupt_control,
destination_address,
requested_vector,
target_vtl: target_vtl as u8,
rsvd0: 0,
rsvd1: 0,
};
// SAFETY: calling the hypercall with correct input buffer.
let output = unsafe {
self.mshv_hvcall.hvcall(
HypercallCode::HvCallAssertVirtualInterrupt,
&request,
&mut (),
)
}
.unwrap();
output.result().map_err(Error::RequestInterrupt)
}
/// Attempts to signal a given vp/sint/flag combo using HvSignalEventDirect.
///
/// No result is returned because this request may be deferred until the
/// hypervisor is returning to a lower VTL.
pub fn signal_event_direct(&self, vp: u32, sint: u8, flag: u16) {
tracing::trace!(vp, sint, flag, "signaling event");
push_deferred_action(self, DeferredAction::SignalEvent { vp, sint, flag });
}
fn hvcall_signal_event_direct(&self, vp: u32, sint: u8, flag: u16) -> Result<bool, Error> {
let signal_event_input = hvdef::hypercall::SignalEventDirect {
target_partition: HV_PARTITION_ID_SELF,
target_vp: vp,
target_vtl: Vtl::Vtl0 as u8,
target_sint: sint,
flag_number: flag,
};
let mut signal_event_output = hvdef::hypercall::SignalEventDirectOutput {
newly_signaled: 0,
rsvd: [0; 7],
};
// SAFETY: calling the hypercall with correct input buffer.
let output = unsafe {
self.mshv_hvcall.hvcall(
HypercallCode::HvCallSignalEventDirect,
&signal_event_input,
&mut signal_event_output,
)
}
.unwrap();
output
.result()
.map(|_| signal_event_output.newly_signaled != 0)
.map_err(Error::SignalEvent)
}
/// Attempts to post a given message to a vp/sint combo using HvPostMessageDirect.
pub fn post_message_direct(
&self,
vp: u32,
sint: u8,
message: &HvMessage,
) -> Result<(), HvError> {
tracing::trace!(vp, sint, "posting message");
let post_message = hvdef::hypercall::PostMessageDirect {
partition_id: HV_PARTITION_ID_SELF,
vp_index: vp,
vtl: Vtl::Vtl0 as u8,
padding0: [0; 3],
sint,
padding1: [0; 3],
message: zerocopy::Unalign::new(*message),
padding2: 0,
};
// SAFETY: calling the hypercall with correct input buffer.
let output = unsafe {
self.mshv_hvcall.hvcall(
HypercallCode::HvCallPostMessageDirect,
&post_message,
&mut (),
)
}
.unwrap();
output.result()
}
/// Sets a file to poll during run. When the file's poll state changes, the
/// run will be automatically cancelled.
pub fn set_poll_file(&self, vp: u32, file: RawFd) -> Result<(), Error> {
// SAFETY: calling the IOCTL as defined. This is safe even if the caller
// does not own `file` since all this does is register the file for
// polling.
unsafe {
hcl_set_poll_file(
self.mshv_vtl.file.as_raw_fd(),
&protocol::hcl_set_poll_file {
cpu: vp as i32,
fd: file,
},
)
.map_err(Error::SetPollFile)?;
}
Ok(())
}
/// Gets the current hypervisor reference time.
pub fn reference_time(&self) -> Result<u64, Error> {
Ok(self
.get_vp_register(HvAllArchRegisterName::TimeRefCount, HvInputVtl::CURRENT_VTL)?
.as_u64())
}
/// Get a single VP register for the given VTL via hypercall. Only a select
/// set of registers are supported; others will cause a panic.
#[cfg(guest_arch = "x86_64")]
pub fn get_vp_register(
&self,
name: impl Into<HvX64RegisterName>,
vtl: HvInputVtl,
) -> Result<HvRegisterValue, Error> {
self.mshv_hvcall.get_vp_register_for_vtl(vtl, name.into())
}
/// Get a single VP register for the given VTL via hypercall. Only a select
/// set of registers are supported; others will cause a panic.
#[cfg(guest_arch = "aarch64")]
pub fn get_vp_register(
&self,
name: impl Into<HvArm64RegisterName>,
vtl: HvInputVtl,
) -> Result<HvRegisterValue, Error> {
self.mshv_hvcall.get_vp_register_for_vtl(vtl, name.into())
}
/// Set a single VP register via hypercall as VTL2. Only a select set of registers are
/// supported, others will cause a panic.
fn set_vp_register(
&self,
name: HvRegisterName,
value: HvRegisterValue,
vtl: HvInputVtl,
) -> Result<(), HvError> {
match vtl.target_vtl().unwrap() {
None | Some(Vtl::Vtl2) => {
#[cfg(guest_arch = "x86_64")]
assert!(matches!(
name.into(),
HvX64RegisterName::GuestVsmPartitionConfig
| HvX64RegisterName::VsmPartitionConfig
| HvX64RegisterName::PmTimerAssist
));
#[cfg(guest_arch = "aarch64")]
assert!(matches!(
name.into(),
HvArm64RegisterName::GuestVsmPartitionConfig
| HvArm64RegisterName::VsmPartitionConfig
));
}
Some(Vtl::Vtl1) => {
// TODO: allowed registers for VTL1
todo!();
}
Some(Vtl::Vtl0) => {
// TODO: allowed registers for VTL0
todo!();
}
}
let header = hvdef::hypercall::GetSetVpRegisters {
partition_id: HV_PARTITION_ID_SELF,
vp_index: HV_VP_INDEX_SELF,
target_vtl: HvInputVtl::CURRENT_VTL,
rsvd: [0; 3],
};
let input = HvRegisterAssoc {
name,
pad: Default::default(),
value,
};
tracing::trace!(?name, register = ?value, "HvCallSetVpRegisters");
// SAFETY: The input header and rep slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let output = unsafe {
self.mshv_hvcall
.hvcall_rep::<hvdef::hypercall::GetSetVpRegisters, HvRegisterAssoc, u8>(
HypercallCode::HvCallSetVpRegisters,
&header,
HvcallRepInput::Elements(&[input]),
None,
)
.expect("set_vp_registers hypercall should not fail")
};
output.result()?;
// hypercall must succeed with 1 rep completed
assert_eq!(output.elements_processed(), 1);
Ok(())
}
/// Translate the following gva to a gpa page.
///
/// The caller must ensure `control_flags.input_vtl()` is set to a specific
/// VTL.
#[cfg(guest_arch = "aarch64")]
pub fn translate_gva_to_gpa(
&self,
gva: u64,
control_flags: hvdef::hypercall::TranslateGvaControlFlagsArm64,
) -> Result<Result<TranslateResult, aarch64::TranslateErrorAarch64>, TranslateGvaToGpaError>
{
use hvdef::hypercall;
assert!(!self.isolation.is_hardware_isolated());
assert!(
control_flags.input_vtl().use_target_vtl(),
"did not specify a target VTL"
);
let header = hypercall::TranslateVirtualAddressArm64 {
partition_id: HV_PARTITION_ID_SELF,
vp_index: HV_VP_INDEX_SELF,
reserved: 0,
control_flags,
gva_page: gva >> hvdef::HV_PAGE_SHIFT,
};
let mut output: hypercall::TranslateVirtualAddressExOutputArm64 = FromZeros::new_zeroed();
// SAFETY: The input header and slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.mshv_hvcall
.hvcall(
HypercallCode::HvCallTranslateVirtualAddressEx,
&header,
&mut output,
)
.expect("translate can never fail")
};
status
.result()
.map_err(|hv_error| TranslateGvaToGpaError::Hypervisor { gva, hv_error })?;
// Note: WHP doesn't currently support TranslateVirtualAddressEx, so overlay_page, cache_type,
// event_info aren't trustworthy values if the results came from WHP.
match output.translation_result.result.result_code() {
c if c == hypercall::TranslateGvaResultCode::SUCCESS.0 => Ok(Ok(TranslateResult {
gpa_page: output.gpa_page,
overlay_page: output.translation_result.result.overlay_page(),
})),
x => Ok(Err(aarch64::TranslateErrorAarch64 { code: x })),
}
}
fn to_hv_gpa_range_array(gpa_memory_ranges: &[MemoryRange]) -> Vec<HvGpaRange> {
const PAGES_PER_ENTRY: u64 = 2048;
const PAGE_SIZE: u64 = HV_PAGE_SIZE;
// Estimate the total number of pages across all memory ranges
let estimated_size: usize = gpa_memory_ranges
.iter()
.map(|memory_range| {
let total_pages = (memory_range.end() - memory_range.start()).div_ceil(PAGE_SIZE);
total_pages.div_ceil(PAGES_PER_ENTRY)
})
.sum::<u64>() as usize;
// Create a vector with the estimated size
let mut hv_gpa_ranges = Vec::with_capacity(estimated_size);
for memory_range in gpa_memory_ranges {
// Calculate the total number of pages in the memory range
let total_pages = (memory_range.end() - memory_range.start()).div_ceil(PAGE_SIZE);
// Convert start address to page number
let start_page = memory_range.start_4k_gpn();
// Generate the ranges and append them to the vector
hv_gpa_ranges.extend(
(0..total_pages)
.step_by(PAGES_PER_ENTRY as usize)
.map(|start| {
let end = std::cmp::min(total_pages, start + PAGES_PER_ENTRY);
let pages_in_this_range = end - start;
let gpa_page_number = start_page + start;
let extended = HvGpaRangeExtended::new()
.with_additional_pages(pages_in_this_range - 1)
.with_large_page(false) // Assuming not a large page
.with_gpa_page_number(gpa_page_number);
HvGpaRange(extended.into_bits())
}),
);
}
hv_gpa_ranges // Return the vector at the end
}
fn pin_unpin_gpa_ranges_internal(
&self,
gpa_ranges: &[HvGpaRange],
action: GpaPinUnpinAction,
) -> Result<(), PinUnpinError> {
const PIN_REQUEST_HEADER_SIZE: usize =
size_of::<hvdef::hypercall::PinUnpinGpaPageRangesHeader>();
const MAX_INPUT_ELEMENTS: usize =
(HV_PAGE_SIZE as usize - PIN_REQUEST_HEADER_SIZE) / size_of::<u64>();
let header = hvdef::hypercall::PinUnpinGpaPageRangesHeader { reserved: 0 };
let mut ranges_processed = 0;
for chunk in gpa_ranges.chunks(MAX_INPUT_ELEMENTS) {
// SAFETY: This unsafe block is valid because:
// 1. The code and header going to match the expected input for the hypercall.
//
// 2. Hypercall result is checked right after the hypercall is issued.
//
let output = unsafe {
self.mshv_hvcall
.hvcall_rep(
match action {
GpaPinUnpinAction::PinGpaRange => HypercallCode::HvCallPinGpaPageRanges,
GpaPinUnpinAction::UnpinGpaRange => {
HypercallCode::HvCallUnpinGpaPageRanges
}
},
&header,
HvcallRepInput::Elements(chunk),
None::<&mut [u8]>,
)
.expect("submitting pin/unpin hypercall should not fail")
};
ranges_processed += output.elements_processed();
output.result().map_err(|e| PinUnpinError {
ranges_processed,
error: e,
})?;
}
// At end all the ranges should be processed
if ranges_processed == gpa_ranges.len() {
Ok(())
} else {
Err(PinUnpinError {
ranges_processed,
error: HvError::OperationFailed,
})
}
}
fn perform_pin_unpin_gpa_ranges(
&self,
gpa_ranges: &[MemoryRange],
action: GpaPinUnpinAction,
rollback_action: GpaPinUnpinAction,
) -> Result<(), HvError> {
let hv_gpa_ranges: Vec<HvGpaRange> = Self::to_hv_gpa_range_array(gpa_ranges);
// Attempt to pin/unpin the ranges
match self.pin_unpin_gpa_ranges_internal(&hv_gpa_ranges, action) {
Ok(_) => Ok(()),
Err(PinUnpinError {
error,
ranges_processed,
}) => {
// Unpin the ranges that were successfully pinned
let pinned_ranges = &hv_gpa_ranges[..ranges_processed];
if let Err(rollback_error) =
self.pin_unpin_gpa_ranges_internal(pinned_ranges, rollback_action)
{
// Panic if rollback is failing
panic!(
"Failed to perform action {:?} on ranges. Error : {:?}. \
Attempted to rollback {:?} ranges out of {:?}.\n rollback error: {:?}",
action,
error,
ranges_processed,
gpa_ranges.len(),
rollback_error
);
}
// Surface the original error
Err(error)
}
}
}
/// Pins the specified guest physical address ranges in the hypervisor.
/// The memory ranges passed to this function must be VA backed memory.
/// If a partial failure occurs (i.e., some but not all the ranges were successfully pinned),
/// the function will automatically attempt to unpin any successfully pinned ranges.
/// This "rollback" behavior ensures that no partially pinned state remains, which
/// could otherwise lead to inconsistencies.
///
pub fn pin_gpa_ranges(&self, ranges: &[MemoryRange]) -> Result<(), HvError> {
self.perform_pin_unpin_gpa_ranges(
ranges,
GpaPinUnpinAction::PinGpaRange,
GpaPinUnpinAction::UnpinGpaRange,
)
}
/// Unpins the specified guest physical address ranges in the hypervisor.
/// The memory ranges passed to this function must be VA backed memory.
/// If a partial failure occurs (i.e., some but not all the ranges were successfully unpinned),
/// the function will automatically attempt to pin any successfully unpinned ranges. This "rollback"
/// behavior ensures that no partially unpinned state remains, which could otherwise lead to inconsistencies.
///
pub fn unpin_gpa_ranges(&self, ranges: &[MemoryRange]) -> Result<(), HvError> {
self.perform_pin_unpin_gpa_ranges(
ranges,
GpaPinUnpinAction::UnpinGpaRange,
GpaPinUnpinAction::PinGpaRange,
)
}
/// Read the vsm capabilities register for VTL2.
pub fn get_vsm_capabilities(&self) -> Result<hvdef::HvRegisterVsmCapabilities, Error> {
let caps = hvdef::HvRegisterVsmCapabilities::from(
self.get_vp_register(
HvAllArchRegisterName::VsmCapabilities,
HvInputVtl::CURRENT_VTL,
)?
.as_u64(),
);
let caps = match self.isolation {
IsolationType::None | IsolationType::Vbs => caps,
// TODO SNP: Return actions may be useful, but with alternate injection many of these need
// cannot actually be processed by the hypervisor without returning to VTL2.
// Filter them out for now.
IsolationType::Snp => hvdef::HvRegisterVsmCapabilities::new()
.with_deny_lower_vtl_startup(caps.deny_lower_vtl_startup())
.with_intercept_page_available(caps.intercept_page_available()),
IsolationType::Tdx => hvdef::HvRegisterVsmCapabilities::new()
.with_deny_lower_vtl_startup(caps.deny_lower_vtl_startup())
.with_intercept_page_available(caps.intercept_page_available())
.with_dr6_shared(true),
};
assert_eq!(caps.dr6_shared(), self.dr6_shared());
Ok(caps)
}
/// Set the [`hvdef::HvRegisterVsmPartitionConfig`] register.
pub fn set_vtl2_vsm_partition_config(
&self,
vsm_config: HvRegisterVsmPartitionConfig,
) -> Result<(), SetVsmPartitionConfigError> {
self.set_vp_register(
HvAllArchRegisterName::VsmPartitionConfig.into(),
HvRegisterValue::from(u64::from(vsm_config)),
HvInputVtl::CURRENT_VTL,
)
.map_err(|e| SetVsmPartitionConfigError::Hypervisor {
config: vsm_config,
hv_error: e,
})
}
/// Get the [`hvdef::HvRegisterGuestVsmPartitionConfig`] register
pub fn get_guest_vsm_partition_config(
&self,
) -> Result<hvdef::HvRegisterGuestVsmPartitionConfig, Error> {
Ok(hvdef::HvRegisterGuestVsmPartitionConfig::from(
self.get_vp_register(
HvAllArchRegisterName::GuestVsmPartitionConfig,
HvInputVtl::CURRENT_VTL,
)?
.as_u64(),
))
}
/// Configure guest VSM.
/// The only configuration attribute currently supported is changing the maximum number of
/// guest-visible virtual trust levels for the partition. (VTL 1)
pub fn set_guest_vsm_partition_config(
&self,
enable_guest_vsm: bool,
) -> Result<(), SetGuestVsmConfigError> {
let register_value = hvdef::HvRegisterGuestVsmPartitionConfig::new()
.with_maximum_vtl(if enable_guest_vsm { 1 } else { 0 })
.with_reserved(0);
tracing::trace!(enable_guest_vsm, "set_guest_vsm_partition_config");
if self.isolation.is_hardware_isolated() {
unimplemented!("set_guest_vsm_partition_config");
}
self.set_vp_register(
HvAllArchRegisterName::GuestVsmPartitionConfig.into(),
HvRegisterValue::from(u64::from(register_value)),
HvInputVtl::CURRENT_VTL,
)
.map_err(|e| SetGuestVsmConfigError::Hypervisor {
enable_guest_vsm,
hv_error: e,
})
}
/// Sets the Power Management Timer assist in the hypervisor.
#[cfg(guest_arch = "x86_64")]
pub fn set_pm_timer_assist(&self, port: Option<u16>) -> Result<(), HvError> {
tracing::debug!(?port, "set_pm_timer_assist");
if self.isolation.is_hardware_isolated() {
if port.is_some() {
unimplemented!("set_pm_timer_assist");
}
}
let val = HvRegisterValue::from(u64::from(match port {
Some(p) => hvdef::HvPmTimerInfo::new()
.with_port(p)
.with_enabled(true)
.with_width_24(false),
None => 0.into(),
}));
self.set_vp_register(
HvX64RegisterName::PmTimerAssist.into(),
val,
HvInputVtl::CURRENT_VTL,
)
}
/// Sets the Power Management Timer assist in the hypervisor.
#[cfg(guest_arch = "aarch64")]
pub fn set_pm_timer_assist(&self, port: Option<u16>) -> Result<(), HvError> {
tracing::debug!(?port, "set_pm_timer_assist unimplemented on aarch64");
Err(HvError::UnknownRegisterName)
}
/// Sets the VTL protection mask for the specified memory range.
pub fn modify_vtl_protection_mask(
&self,
range: MemoryRange,
map_flags: HvMapGpaFlags,
target_vtl: HvInputVtl,
) -> Result<(), ApplyVtlProtectionsError> {
if self.isolation.is_hardware_isolated() {
// TODO SNP TODO TDX - required for vmbus relay monitor page support
todo!();
}
self.mshv_hvcall
.modify_vtl_protection_mask(range, map_flags, target_vtl)
}
/// Checks whether the target vtl has vtl permissions for the given gpa
pub fn check_vtl_access(
&self,
gpa: u64,
target_vtl: GuestVtl,
flags: HvMapGpaFlags,
) -> Result<Option<CheckVtlAccessResult>, Error> {
assert!(!self.isolation.is_hardware_isolated());
let header = hvdef::hypercall::CheckSparseGpaPageVtlAccess {
partition_id: HV_PARTITION_ID_SELF,
target_vtl: HvInputVtl::from(target_vtl),
desired_access: u32::from(flags) as u8,
reserved0: 0,
reserved1: 0,
};
let mut output = [hvdef::hypercall::CheckSparseGpaPageVtlAccessOutput::new()];
// SAFETY: The input header and rep slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.mshv_hvcall.hvcall_rep::<hvdef::hypercall::CheckSparseGpaPageVtlAccess, u64, hvdef::hypercall::CheckSparseGpaPageVtlAccessOutput>(
HypercallCode::HvCallCheckSparseGpaPageVtlAccess,
&header,
HvcallRepInput::Elements(&[gpa >> hvdef::HV_PAGE_SHIFT]),
Some(&mut output),
)
.expect("check_vtl_access hypercall should not fail")
};
// TODO GUEST_VSM: for isolated VMs, if the status is operation denied,
// return memory unaccepted?
status.result().map_err(Error::CheckVtlAccess)?;
let access_result = output[0];
if access_result.result_code() as u32
!= hvdef::hypercall::CheckGpaPageVtlAccessResultCode::SUCCESS.0
{
return Ok(Some(CheckVtlAccessResult {
vtl: (access_result.intercepting_vtl() as u8)
.try_into()
.expect("checking vtl permissions failure should return valid vtl"),
denied_flags: (access_result.denied_access() as u32).into(),
}));
}
assert_eq!(status.elements_processed(), 1);
Ok(None)
}
/// Enables a vtl for the partition
pub fn enable_partition_vtl(
&self,
vtl: GuestVtl,
flags: hvdef::hypercall::EnablePartitionVtlFlags,
) -> Result<(), HvError> {
use hvdef::hypercall;
let header = hypercall::EnablePartitionVtl {
partition_id: HV_PARTITION_ID_SELF,
target_vtl: vtl.into(),
flags,
reserved_z0: 0,
reserved_z1: 0,
};
// SAFETY: The input header and slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.mshv_hvcall
.hvcall(HypercallCode::HvCallEnablePartitionVtl, &header, &mut ())
.expect("submitting hypercall should not fail")
};
status.result()
}
/// Enables a vtl on a vp
pub fn enable_vp_vtl(
&self,
vp_index: u32,
vtl: GuestVtl,
hv_vp_context: InitialVpContextX64,
) -> Result<(), HvError> {
use hvdef::hypercall;
let header = hypercall::EnableVpVtlX64 {
partition_id: HV_PARTITION_ID_SELF,
vp_index,
target_vtl: vtl.into(),
reserved: [0; 3],
vp_vtl_context: hv_vp_context,
};
// SAFETY: The input header and slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.mshv_hvcall
.hvcall(HypercallCode::HvCallEnableVpVtl, &header, &mut ())
.expect("submitting hypercall should not fail")
};
status.result()
}
/// Gets the PFN for the VTL 1 VMSA
pub fn vtl1_vmsa_pfn(&self, vp_index: u32) -> u64 {
let mut vp_pfn = vp_index as u64; // input vp, output pfn
// SAFETY: The ioctl requires no prerequisites other than the VTL 1 VMSA
// should be mapped. This ioctl should never fail as long as the vtl 1
// VMSA was mapped.
unsafe {
hcl_read_guest_vsm_page_pfn(self.mshv_vtl.file.as_raw_fd(), &mut vp_pfn)
.expect("should always succeed");
}
vp_pfn
}
/// Returns the isolation type for the partition.
pub fn isolation(&self) -> IsolationType {
self.isolation
}
/// Reads MSR_IA32_VMX_CR4_FIXED1 in kernel mode.
pub fn read_vmx_cr4_fixed1(&self) -> u64 {
let mut value = 0;
// SAFETY: The ioctl requires no prerequisites other than a location to
// write the read MSR. This ioctl should never fail.
unsafe {
hcl_read_vmx_cr4_fixed1(self.mshv_vtl.file.as_raw_fd(), &mut value)
.expect("should always succeed");
}
value
}
/// Invokes the HvCallMemoryMappedIoRead hypercall
pub fn memory_mapped_io_read(&self, gpa: u64, data: &mut [u8]) -> Result<(), HvError> {
assert!(data.len() <= hvdef::hypercall::HV_HYPERCALL_MMIO_MAX_DATA_LENGTH);
let header = hvdef::hypercall::MemoryMappedIoRead {
gpa,
access_width: data.len() as u32,
reserved_z0: 0,
};
let mut output: hvdef::hypercall::MemoryMappedIoReadOutput = FromZeros::new_zeroed();
// SAFETY: The input header and slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.mshv_hvcall
.hvcall(
HypercallCode::HvCallMemoryMappedIoRead,
&header,
&mut output,
)
.expect("submitting hypercall should not fail")
};
// Only copy the data if the hypercall was successful
if status.result().is_ok() {
data.copy_from_slice(&output.data[..data.len()]);
};
status.result()
}
/// Invokes the HvCallMemoryMappedIoWrite hypercall
pub fn memory_mapped_io_write(&self, gpa: u64, data: &[u8]) -> Result<(), HvError> {
assert!(data.len() <= hvdef::hypercall::HV_HYPERCALL_MMIO_MAX_DATA_LENGTH);
let mut header = hvdef::hypercall::MemoryMappedIoWrite {
gpa,
access_width: data.len() as u32,
reserved_z0: 0,
data: [0; hvdef::hypercall::HV_HYPERCALL_MMIO_MAX_DATA_LENGTH],
};
header.data[..data.len()].copy_from_slice(data);
// SAFETY: The input header and slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.mshv_hvcall
.hvcall(HypercallCode::HvCallMemoryMappedIoWrite, &header, &mut ())
.expect("submitting hypercall should not fail")
};
status.result()
}
/// Invokes the HvCallRetargetDeviceInterrupt hypercall.
/// `target_processors` must be sorted in ascending order.
pub fn retarget_device_interrupt(
&self,
device_id: u64,
entry: hvdef::hypercall::InterruptEntry,
vector: u32,
multicast: bool,
target_processors: ProcessorSet<'_>,
) -> Result<(), HvError> {
let header = hvdef::hypercall::RetargetDeviceInterrupt {
partition_id: HV_PARTITION_ID_SELF,
device_id,
entry,
rsvd: 0,
target_header: hvdef::hypercall::InterruptTarget {
vector,
flags: hvdef::hypercall::HvInterruptTargetFlags::default()
.with_multicast(multicast)
.with_processor_set(true),
// Always use a generic processor set to simplify construction. This hypercall is
// invoked relatively infrequently, the overhead should be acceptable.
mask_or_format: hvdef::hypercall::HV_GENERIC_SET_SPARSE_4K,
},
};
let processor_set = Vec::from_iter(target_processors.as_generic_set());
// SAFETY: The input header and slice are the correct types for this hypercall.
// The hypercall output is validated right after the hypercall is issued.
let status = unsafe {
self.mshv_hvcall
.hvcall_var(
HypercallCode::HvCallRetargetDeviceInterrupt,
&header,
processor_set.as_bytes(),
&mut (),
)
.expect("submitting hypercall should not fail")
};
status.result()
}
/// Gets the permissions for a vtl.
/// Currently unused, but available for debugging purposes
#[cfg(debug_assertions)]
pub fn rmp_query(&self, gpa: u64, vtl: GuestVtl) -> x86defs::snp::SevRmpAdjust {
use x86defs::snp::SevRmpAdjust;
let page_count = 1u64;
let flags = [u64::from(SevRmpAdjust::new().with_target_vmpl(match vtl {
GuestVtl::Vtl0 => 2,
GuestVtl::Vtl1 => 1,
}))];
let page_size = [0u64];
let pages_processed = 0;
debug_assert!(flags.len() == page_count as usize);
debug_assert!(page_size.len() == page_count as usize);
let query = mshv_rmpquery {
start_pfn: gpa / HV_PAGE_SIZE,
page_count,
terminate_on_failure: 0,
ram: 0,
padding: Default::default(),
flags: flags.as_ptr().cast_mut(),
page_size: page_size.as_ptr().cast_mut(),
pages_processed: core::ptr::from_ref(&pages_processed).cast_mut(),
};
// SAFETY: the input query is the correct type for this ioctl
unsafe {
hcl_rmpquery_pages(self.mshv_vtl.file.as_raw_fd(), &query)
.expect("should always succeed");
}
debug_assert!(pages_processed <= page_count);
SevRmpAdjust::from(flags[0])
}
/// Issues an INVLPGB instruction.
pub fn invlpgb(&self, rax: u64, edx: u32, ecx: u32) {
let data = mshv_invlpgb {
rax,
edx,
ecx,
_pad0: 0,
_pad1: 0,
};
// SAFETY: ioctl has no prerequisites.
unsafe {
hcl_invlpgb(self.mshv_vtl.file.as_raw_fd(), &data).expect("should always succeed");
}
}
/// Issues a TLBSYNC instruction.
pub fn tlbsync(&self) {
// SAFETY: ioctl has no prerequisites.
unsafe {
hcl_tlbsync(self.mshv_vtl.file.as_raw_fd()).expect("should always succeed");
}
}
}