guestmem/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Interfaces to read and write guest memory.

// UNSAFETY: This crate's whole purpose is manual memory mapping and management.
#![expect(unsafe_code)]

pub mod ranges;

use self::ranges::PagedRange;
use inspect::Inspect;
use pal_event::Event;
use sparse_mmap::AsMappableRef;
use std::fmt::Debug;
use std::io;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ops::Range;
use std::ptr::NonNull;
use std::sync::atomic::AtomicU8;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use thiserror::Error;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::FromZeroes;

// Effective page size for page-related operations in this crate.
pub const PAGE_SIZE: usize = 4096;
const PAGE_SIZE64: u64 = 4096;

/// A memory access error returned by one of the [`GuestMemory`] methods.
#[derive(Debug, Error)]
#[error(transparent)]
pub struct GuestMemoryError(Box<GuestMemoryErrorInner>);

impl GuestMemoryError {
    fn new(
        debug_name: &Arc<str>,
        range: Option<Range<u64>>,
        op: GuestMemoryOperation,
        err: GuestMemoryBackingError,
    ) -> Self {
        GuestMemoryError(Box::new(GuestMemoryErrorInner {
            op,
            debug_name: debug_name.clone(),
            range,
            gpa: (err.gpa != INVALID_ERROR_GPA).then_some(err.gpa),
            err: err.err,
        }))
    }
}

#[derive(Debug, Copy, Clone)]
enum GuestMemoryOperation {
    Read,
    Write,
    Fill,
    CompareExchange,
    Lock,
    Subrange,
    Probe,
}

impl std::fmt::Display for GuestMemoryOperation {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.pad(match self {
            GuestMemoryOperation::Read => "read",
            GuestMemoryOperation::Write => "write",
            GuestMemoryOperation::Fill => "fill",
            GuestMemoryOperation::CompareExchange => "compare exchange",
            GuestMemoryOperation::Lock => "lock",
            GuestMemoryOperation::Subrange => "subrange",
            GuestMemoryOperation::Probe => "probe",
        })
    }
}

#[derive(Debug, Error)]
struct GuestMemoryErrorInner {
    op: GuestMemoryOperation,
    debug_name: Arc<str>,
    range: Option<Range<u64>>,
    gpa: Option<u64>,
    #[source]
    err: Box<dyn std::error::Error + Send + Sync>,
}

impl std::fmt::Display for GuestMemoryErrorInner {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "guest memory '{debug_name}': {op} error: failed to access ",
            debug_name = self.debug_name,
            op = self.op
        )?;
        if let Some(range) = &self.range {
            write!(f, "{:#x}-{:#x}", range.start, range.end)?;
        } else {
            f.write_str("memory")?;
        }
        // Include the precise GPA if provided and different from the start of
        // the range.
        if let Some(gpa) = self.gpa {
            if self.range.as_ref().map_or(true, |range| range.start != gpa) {
                write!(f, " at {:#x}", gpa)?;
            }
        }
        Ok(())
    }
}

/// A memory access error returned by a [`GuestMemoryAccess`] trait method.
#[derive(Debug)]
pub struct GuestMemoryBackingError {
    gpa: u64,
    err: Box<dyn std::error::Error + Send + Sync>,
}

/// Used to avoid needing an `Option` for [`GuestMemoryBackingError::gpa`], to
/// save size in hot paths.
const INVALID_ERROR_GPA: u64 = !0;

impl GuestMemoryBackingError {
    /// Returns a new error for a memory access failure at address `gpa`.
    pub fn new(gpa: u64, err: impl Into<Box<dyn std::error::Error + Send + Sync>>) -> Self {
        // `gpa` might incorrectly be INVALID_ERROR_GPA; this is harmless (just
        // affecting the error message), so don't assert on it in case this is
        // an untrusted value in some path.
        Self {
            gpa,
            err: err.into(),
        }
    }

    fn gpn(err: InvalidGpn) -> Self {
        Self {
            gpa: INVALID_ERROR_GPA,
            err: err.into(),
        }
    }
}

#[derive(Debug, Error)]
#[error("no memory at address")]
struct OutOfRange;

#[derive(Debug, Error)]
#[error("memory not lockable")]
struct NotLockable;

#[derive(Debug, Error)]
#[error("no fallback for this operation")]
struct NoFallback;

#[derive(Debug, Error)]
#[error("the specified page is not mapped")]
struct NotMapped;

#[derive(Debug, Error)]
#[error("page inaccessible in bitmap")]
struct BitmapFailure;

/// A trait for a guest memory backing that is fully available via a virtual
/// address mapping, as opposed to the fallback functions such as
/// [`GuestMemoryAccess::read_fallback`].
///
/// By implementing this trait, a type guarantees that its
/// [`GuestMemoryAccess::mapping`] will return `Some(_)` and that all of its
/// memory can be accessed through that mapping, without needing to call the
/// fallback functions.
pub trait LinearGuestMemory: GuestMemoryAccess {}

// SAFETY: the allocation will stay valid for the lifetime of the object.
unsafe impl GuestMemoryAccess for sparse_mmap::alloc::SharedMem {
    fn mapping(&self) -> Option<NonNull<u8>> {
        NonNull::new(self.as_ptr().cast_mut().cast())
    }

    fn max_address(&self) -> u64 {
        self.len() as u64
    }
}

impl LinearGuestMemory for sparse_mmap::alloc::SharedMem {}

/// A page-aligned heap allocation for use with [`GuestMemory`].
pub struct AlignedHeapMemory {
    pages: Box<[AlignedPage]>,
}

impl Debug for AlignedHeapMemory {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("AlignedHeapMemory")
            .field("len", &self.len())
            .finish()
    }
}

#[repr(C, align(4096))]
struct AlignedPage([AtomicU8; PAGE_SIZE]);

impl AlignedHeapMemory {
    /// Allocates a new memory of `size` bytes, rounded up to a page size.
    pub fn new(size: usize) -> Self {
        #[allow(clippy::declare_interior_mutable_const)] // <https://github.com/rust-lang/rust-clippy/issues/7665>
        const ZERO: AtomicU8 = AtomicU8::new(0);
        #[allow(clippy::declare_interior_mutable_const)]
        const ZERO_PAGE: AlignedPage = AlignedPage([ZERO; PAGE_SIZE]);
        let mut pages = Vec::new();
        pages.resize_with(size.div_ceil(PAGE_SIZE), || ZERO_PAGE);
        Self {
            pages: pages.into(),
        }
    }

    /// Returns the length of the memory in bytes.
    pub fn len(&self) -> usize {
        self.pages.len() * PAGE_SIZE
    }

    /// Returns an immutable slice of bytes.
    ///
    /// This must take `&mut self` since the buffer is mutable via interior
    /// mutability with just `&self`.
    pub fn as_bytes(&mut self) -> &[u8] {
        self.as_mut()
    }

    /// Returns a mutable slice of bytes.
    pub fn as_bytes_mut(&mut self) -> &mut [u8] {
        self.as_mut()
    }
}

impl Deref for AlignedHeapMemory {
    type Target = [AtomicU8];

    fn deref(&self) -> &Self::Target {
        // SAFETY: the buffer has the correct size and validity.
        unsafe { std::slice::from_raw_parts(self.pages.as_ptr().cast(), self.len()) }
    }
}

impl DerefMut for AlignedHeapMemory {
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY: the buffer is unaliased and valid.
        unsafe { std::slice::from_raw_parts_mut(self.pages.as_mut_ptr().cast(), self.len()) }
    }
}

impl AsRef<[AtomicU8]> for AlignedHeapMemory {
    fn as_ref(&self) -> &[AtomicU8] {
        self
    }
}

impl AsMut<[AtomicU8]> for AlignedHeapMemory {
    fn as_mut(&mut self) -> &mut [AtomicU8] {
        self
    }
}

impl AsMut<[u8]> for AlignedHeapMemory {
    fn as_mut(&mut self) -> &mut [u8] {
        // FUTURE: use AtomicU8::get_mut_slice once stabilized.
        // SAFETY: the buffer is unaliased, so it is fine to cast away the atomicness of the
        // slice.
        unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr().cast(), self.len()) }
    }
}

// SAFETY: the allocation remains alive and valid for the lifetime of the
// object.
unsafe impl GuestMemoryAccess for AlignedHeapMemory {
    fn mapping(&self) -> Option<NonNull<u8>> {
        NonNull::new(self.pages.as_ptr().cast_mut().cast())
    }

    fn max_address(&self) -> u64 {
        (self.pages.len() * PAGE_SIZE) as u64
    }
}

impl LinearGuestMemory for AlignedHeapMemory {}

/// A trait for a guest memory backing.
///
/// Guest memory may be backed by a virtual memory mapping, in which case this
/// trait can provide the VA and length of that mapping. Alternatively, it may
/// be backed by some other means, in which case this trait can provide fallback
/// methods for reading and writing memory.
///
/// Memory access should first be attempted via the virtual address mapping. If
/// this fails or is not present, the caller should fall back to `read_fallback`
/// or `write_fallback`. This allows an implementation to have a fast path using
/// the mapping, and a slow path using the fallback functions.
///
/// # Safety
///
/// The implementor must follow the contract for each method.
pub unsafe trait GuestMemoryAccess: 'static + Send + Sync {
    /// Returns a stable VA mapping for guest memory.
    ///
    /// The size of the mapping is the same as `max_address`.
    ///
    /// The VA is guaranteed to remain reserved, but individual ranges may be
    /// uncommitted.
    fn mapping(&self) -> Option<NonNull<u8>>;

    /// The maximum address that can be passed to the `*_fallback` methods, as
    /// well as the maximum offset into the VA range described by `mapping`.
    fn max_address(&self) -> u64;

    /// The bitmaps to check for validity, one bit per page. If a bit is set,
    /// then the page is valid to access via the mapping; if it is clear, then
    /// the page will not be accessed.
    ///
    /// The bitmaps must be at least `ceil(bitmap_start + max_address() /
    /// PAGE_SIZE)` bits long, and they must be valid for atomic read access for
    /// the lifetime of this object from any thread.
    ///
    /// The bitmaps are only checked if there is a mapping. If the bitmap check
    /// fails, then the associated `*_fallback` routine is called to handle the
    /// error.
    ///
    /// TODO: add a synchronization scheme.
    fn access_bitmap(&self) -> Option<BitmapInfo> {
        None
    }

    // Returns an accessor for a subrange, or `None` to use the default
    // implementation.
    fn subrange(
        &self,
        offset: u64,
        len: u64,
        allow_preemptive_locking: bool,
    ) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
        let _ = (offset, len, allow_preemptive_locking);
        Ok(None)
    }

    /// Called when access to memory via the mapped range fails, either due to a
    /// bitmap failure or due to a failure when accessing the virtual address.
    ///
    /// `address` is the address where the access failed. `len` is the remainder
    /// of the access; it is not necessarily the case that all `len` bytes are
    /// inaccessible in the bitmap or mapping.
    ///
    /// Returns whether the faulting operation should be retried, failed, or that
    /// one of the fallback operations (e.g. `read_fallback`) should be called.
    fn page_fault(
        &self,
        address: u64,
        len: usize,
        write: bool,
        bitmap_failure: bool,
    ) -> PageFaultAction {
        let _ = (address, len, write);
        if bitmap_failure {
            PageFaultAction::Fail(BitmapFailure.into())
        } else {
            PageFaultAction::Fail(NotMapped.into())
        }
    }

    /// Fallback called if a read fails via direct access to `mapped_range`.
    ///
    /// This is only called if `mapping()` returns `None` or if `page_fault()`
    /// returns `PageFaultAction::Fallback`.
    ///
    /// Implementors must ensure that `dest[..len]` is fully initialized on
    /// successful return.
    ///
    /// # Safety
    /// The caller must ensure that `dest[..len]` is valid for write. Note,
    /// however, that `dest` might be aliased by other threads, the guest, or
    /// the kernel.
    unsafe fn read_fallback(
        &self,
        addr: u64,
        dest: *mut u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        let _ = (dest, len);
        Err(GuestMemoryBackingError::new(addr, NoFallback))
    }

    /// Fallback called if a write fails via direct access to `mapped_range`.
    ///
    /// This is only called if `mapping()` returns `None` or if `page_fault()`
    /// returns `PageFaultAction::Fallback`.
    ///
    /// # Safety
    /// The caller must ensure that `src[..len]` is valid for read. Note,
    /// however, that `src` might be aliased by other threads, the guest, or
    /// the kernel.
    unsafe fn write_fallback(
        &self,
        addr: u64,
        src: *const u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        let _ = (src, len);
        Err(GuestMemoryBackingError::new(addr, NoFallback))
    }

    /// Fallback called if a fill fails via direct access to `mapped_range`.
    ///
    /// This is only called if `mapping()` returns `None` or if `page_fault()`
    /// returns `PageFaultAction::Fallback`.
    fn fill_fallback(&self, addr: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
        let _ = (val, len);
        Err(GuestMemoryBackingError::new(addr, NoFallback))
    }

    /// Fallback called if a compare exchange fails via direct access to `mapped_range`.
    ///
    /// On compare failure, returns `Ok(false)` and updates `current`.
    ///
    /// This is only called if `mapping()` returns `None` or if `page_fault()`
    /// returns `PageFaultAction::Fallback`.
    fn compare_exchange_fallback(
        &self,
        addr: u64,
        current: &mut [u8],
        new: &[u8],
    ) -> Result<bool, GuestMemoryBackingError> {
        let _ = (current, new);
        Err(GuestMemoryBackingError::new(addr, NoFallback))
    }

    /// Prepares a guest page for having its virtual address exposed as part of
    /// a lock call.
    ///
    /// This is useful to ensure that the address is mapped in a way that it can
    /// be passed to the kernel for DMA.
    fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
        let _ = (address, len);
        Ok(())
    }

    /// Returns the base IO virtual address for the mapping.
    ///
    /// This is the base address that should be used for DMA from a user-mode
    /// device driver whose device is not otherwise configured to go through an
    /// IOMMU.
    fn base_iova(&self) -> Option<u64> {
        None
    }
}

/// The action to take after [`GuestMemoryAccess::page_fault`] returns to
/// continue the operation.
pub enum PageFaultAction {
    /// Fail the operation.
    Fail(Box<dyn std::error::Error + Send + Sync>),
    /// Retry the operation.
    Retry,
    /// Use the fallback method to access the memory.
    Fallback,
}

/// Returned by [`GuestMemoryAccess::access_bitmap`].
pub struct BitmapInfo {
    /// A pointer to the bitmap for read access.
    pub read_bitmap: NonNull<u8>,
    /// A pointer to the bitmap for write access.
    pub write_bitmap: NonNull<u8>,
    /// A pointer to the bitmap for execute access.
    pub execute_bitmap: NonNull<u8>,
    /// The bit offset of the beginning of the bitmap.
    ///
    /// Typically this is zero, but it is needed to support subranges that are
    /// not 8-page multiples.
    pub bit_offset: u8,
}

// SAFETY: passing through guarantees from `T`.
unsafe impl<T: GuestMemoryAccess> GuestMemoryAccess for Arc<T> {
    fn mapping(&self) -> Option<NonNull<u8>> {
        self.as_ref().mapping()
    }

    fn max_address(&self) -> u64 {
        self.as_ref().max_address()
    }

    fn access_bitmap(&self) -> Option<BitmapInfo> {
        self.as_ref().access_bitmap()
    }

    fn subrange(
        &self,
        offset: u64,
        len: u64,
        allow_preemptive_locking: bool,
    ) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
        self.as_ref()
            .subrange(offset, len, allow_preemptive_locking)
    }

    fn page_fault(
        &self,
        addr: u64,
        len: usize,
        write: bool,
        bitmap_failure: bool,
    ) -> PageFaultAction {
        self.as_ref().page_fault(addr, len, write, bitmap_failure)
    }

    unsafe fn read_fallback(
        &self,
        addr: u64,
        dest: *mut u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        // SAFETY: passing through guarantees from caller.
        unsafe { self.as_ref().read_fallback(addr, dest, len) }
    }

    unsafe fn write_fallback(
        &self,
        addr: u64,
        src: *const u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        // SAFETY: passing through guarantees from caller.
        unsafe { self.as_ref().write_fallback(addr, src, len) }
    }

    fn fill_fallback(&self, addr: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
        self.as_ref().fill_fallback(addr, val, len)
    }

    fn compare_exchange_fallback(
        &self,
        addr: u64,
        current: &mut [u8],
        new: &[u8],
    ) -> Result<bool, GuestMemoryBackingError> {
        self.as_ref().compare_exchange_fallback(addr, current, new)
    }

    fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
        self.as_ref().expose_va(address, len)
    }

    fn base_iova(&self) -> Option<u64> {
        self.as_ref().base_iova()
    }
}

// SAFETY: the allocation will stay valid for the lifetime of the object.
unsafe impl GuestMemoryAccess for sparse_mmap::SparseMapping {
    fn mapping(&self) -> Option<NonNull<u8>> {
        NonNull::new(self.as_ptr().cast())
    }

    fn max_address(&self) -> u64 {
        self.len() as u64
    }
}

/// Default guest memory range type, enforcing access boundaries.
struct GuestMemoryAccessRange {
    base: Arc<GuestMemoryInner>,
    offset: u64,
    len: u64,
    region: usize,
}

impl GuestMemoryAccessRange {
    fn adjust_range(&self, address: u64, len: u64) -> Result<u64, GuestMemoryBackingError> {
        if address <= self.len && len <= self.len - address {
            Ok(self.offset + address)
        } else {
            Err(GuestMemoryBackingError::new(address, OutOfRange))
        }
    }
}

// SAFETY: `mapping()` is guaranteed to be valid for the lifetime of the object.
unsafe impl GuestMemoryAccess for GuestMemoryAccessRange {
    fn mapping(&self) -> Option<NonNull<u8>> {
        let region = &self.base.regions[self.region];
        region.mapping.and_then(|mapping| {
            let offset = self.offset & self.base.region_def.region_mask;
            // This is guaranteed by construction.
            assert!(region.len >= offset + self.len);
            // SAFETY: this mapping is guaranteed to be within range by
            // construction (and validated again via the assertion above).
            NonNull::new(unsafe { mapping.0.as_ptr().add(offset as usize) })
        })
    }

    fn max_address(&self) -> u64 {
        self.len
    }

    fn access_bitmap(&self) -> Option<BitmapInfo> {
        let region = &self.base.regions[self.region];
        region.bitmaps.map(|bitmaps| {
            let offset = self.offset & self.base.region_def.region_mask;
            let bit_offset = region.bitmap_start as u64 + offset / PAGE_SIZE64;
            let [read_bitmap, write_bitmap, execute_bitmap] = bitmaps.map(|SendPtrU8(ptr)| {
                // SAFETY: the bitmap is guaranteed to be big enough for the region
                // by construction.
                NonNull::new(unsafe { ptr.as_ptr().add((bit_offset / 8) as usize) }).unwrap()
            });
            let bitmap_start = (bit_offset % 8) as u8;
            BitmapInfo {
                read_bitmap,
                write_bitmap,
                execute_bitmap,
                bit_offset: bitmap_start,
            }
        })
    }

    fn subrange(
        &self,
        offset: u64,
        len: u64,
        _allow_preemptive_locking: bool,
    ) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
        let address = self.adjust_range(offset, len)?;
        Ok(Some(GuestMemory::new(
            self.base.debug_name.clone(),
            GuestMemoryAccessRange {
                base: self.base.clone(),
                offset: address,
                len,
                region: self.region,
            },
        )))
    }

    fn page_fault(
        &self,
        address: u64,
        len: usize,
        write: bool,
        bitmap_failure: bool,
    ) -> PageFaultAction {
        let address = self
            .adjust_range(address, len as u64)
            .expect("the caller should have validated the range was in the mapping");

        self.base
            .imp
            .page_fault(address, len, write, bitmap_failure)
    }

    unsafe fn write_fallback(
        &self,
        address: u64,
        src: *const u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        let address = self.adjust_range(address, len as u64)?;
        // SAFETY: guaranteed by caller.
        unsafe { self.base.imp.write_fallback(address, src, len) }
    }

    fn fill_fallback(
        &self,
        address: u64,
        val: u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        let address = self.adjust_range(address, len as u64)?;
        self.base.imp.fill_fallback(address, val, len)
    }

    fn compare_exchange_fallback(
        &self,
        addr: u64,
        current: &mut [u8],
        new: &[u8],
    ) -> Result<bool, GuestMemoryBackingError> {
        let address = self.adjust_range(addr, new.len() as u64)?;
        self.base
            .imp
            .compare_exchange_fallback(address, current, new)
    }

    unsafe fn read_fallback(
        &self,
        address: u64,
        dest: *mut u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        let address = self.adjust_range(address, len as u64)?;
        // SAFETY: guaranteed by caller.
        unsafe { self.base.imp.read_fallback(address, dest, len) }
    }

    fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
        let address = self.adjust_range(address, len)?;
        self.base.imp.expose_va(address, len)
    }

    fn base_iova(&self) -> Option<u64> {
        let region = &self.base.regions[self.region];
        Some(region.base_iova? + (self.offset & self.base.region_def.region_mask))
    }
}

/// Create a default guest memory subrange that verifies range limits and calls
/// back into the base implementation.
fn create_memory_subrange(
    base: Arc<GuestMemoryInner>,
    offset: u64,
    len: u64,
    _allow_preemptive_locking: bool,
) -> Result<GuestMemory, GuestMemoryBackingError> {
    let (_, _, region) = base.region(offset, len)?;
    Ok(GuestMemory::new(
        base.debug_name.clone(),
        GuestMemoryAccessRange {
            base,
            offset,
            len,
            region,
        },
    ))
}

struct MultiRegionGuestMemoryAccess<T> {
    imps: Vec<Option<T>>,
    region_def: RegionDefinition,
}

impl<T> MultiRegionGuestMemoryAccess<T> {
    fn region(&self, gpa: u64, len: u64) -> Result<(&T, u64), GuestMemoryBackingError> {
        let (i, offset) = self.region_def.region(gpa, len)?;
        let imp = self.imps[i]
            .as_ref()
            .ok_or(GuestMemoryBackingError::new(gpa, OutOfRange))?;
        Ok((imp, offset))
    }
}

// SAFETY: `mapping()` is unreachable and panics if called.
unsafe impl<T: GuestMemoryAccess> GuestMemoryAccess for MultiRegionGuestMemoryAccess<T> {
    fn mapping(&self) -> Option<NonNull<u8>> {
        unreachable!()
    }

    fn max_address(&self) -> u64 {
        unreachable!()
    }

    fn access_bitmap(&self) -> Option<BitmapInfo> {
        unreachable!()
    }

    fn subrange(
        &self,
        offset: u64,
        len: u64,
        allow_preemptive_locking: bool,
    ) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
        let (region, offset_in_region) = self.region(offset, len)?;
        region.subrange(offset_in_region, len, allow_preemptive_locking)
    }

    unsafe fn read_fallback(
        &self,
        addr: u64,
        dest: *mut u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        let (region, offset_in_region) = self.region(addr, len as u64)?;
        // SAFETY: guaranteed by caller.
        unsafe { region.read_fallback(offset_in_region, dest, len) }
    }

    unsafe fn write_fallback(
        &self,
        addr: u64,
        src: *const u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        let (region, offset_in_region) = self.region(addr, len as u64)?;
        // SAFETY: guaranteed by caller.
        unsafe { region.write_fallback(offset_in_region, src, len) }
    }

    fn fill_fallback(&self, addr: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
        let (region, offset_in_region) = self.region(addr, len as u64)?;
        region.fill_fallback(offset_in_region, val, len)
    }

    fn compare_exchange_fallback(
        &self,
        addr: u64,
        current: &mut [u8],
        new: &[u8],
    ) -> Result<bool, GuestMemoryBackingError> {
        let (region, offset_in_region) = self.region(addr, new.len() as u64)?;
        region.compare_exchange_fallback(offset_in_region, current, new)
    }

    fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
        let (region, offset_in_region) = self.region(address, len)?;
        region.expose_va(offset_in_region, len)
    }

    fn base_iova(&self) -> Option<u64> {
        unreachable!()
    }
}

/// A wrapper around a `GuestMemoryAccess` that provides methods for safely
/// reading and writing guest memory.
// NOTE: this type uses `inspect(skip)`, as it end up being a dependency of
// _many_ objects, and littering the inspect graph with references to the same
// node would be silly.
#[derive(Debug, Clone, Inspect)]
#[inspect(skip)]
pub struct GuestMemory {
    inner: Arc<GuestMemoryInner>,
}

struct GuestMemoryInner<T: ?Sized = dyn GuestMemoryAccess> {
    region_def: RegionDefinition,
    regions: Vec<MemoryRegion>,
    debug_name: Arc<str>,
    allocated: bool,
    imp: T,
}

impl<T: ?Sized> Debug for GuestMemoryInner<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("GuestMemoryInner")
            .field("region_def", &self.region_def)
            .field("regions", &self.regions)
            .finish()
    }
}

#[derive(Debug, Copy, Clone, Default)]
struct MemoryRegion {
    mapping: Option<SendPtrU8>,
    bitmaps: Option<[SendPtrU8; 3]>,
    bitmap_start: u8,
    len: u64,
    base_iova: Option<u64>,
}

/// The access type. The values correspond to bitmap indexes.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum AccessType {
    Read = 0,
    Write = 1,
    // FUTURE: add method to read for execute permission.
    _Execute = 2,
}

/// `NonNull<u8>` that implements `Send+Sync`.
///
/// Rust makes pointers `!Send+!Sync` by default to force you to think about the
/// ownership model and thread safety of types using pointers--there is nothing
/// safety-related about `Send`/`Sync` on pointers by themselves since all such
/// accesses to pointers require `unsafe` blocks anyway.
///
/// However, in practice, this leads to spurious manual `Send+Sync` impls on
/// types containing pointers, especially those containing generics. Define a
/// wrapping pointer type that implements `Send+Sync` so that the normal auto
/// trait rules apply to types containing these pointers.
#[derive(Debug, Copy, Clone)]
struct SendPtrU8(NonNull<u8>);

// SAFETY: see type description.
unsafe impl Send for SendPtrU8 {}
// SAFETY: see type description.
unsafe impl Sync for SendPtrU8 {}

impl MemoryRegion {
    fn new(imp: &impl GuestMemoryAccess) -> Self {
        let bitmap_info = imp.access_bitmap();
        let bitmaps = bitmap_info.as_ref().map(|bm| {
            [
                SendPtrU8(bm.read_bitmap),
                SendPtrU8(bm.write_bitmap),
                SendPtrU8(bm.execute_bitmap),
            ]
        });
        let bitmap_start = bitmap_info.map_or(0, |bi| bi.bit_offset);
        Self {
            mapping: imp.mapping().map(SendPtrU8),
            bitmaps,
            bitmap_start,
            len: imp.max_address(),
            base_iova: imp.base_iova(),
        }
    }

    // # Safety
    //
    // The caller must ensure that `offset + len` fits in this region, and that
    // the object bitmap is currently valid for atomic read access from this
    // thread.
    unsafe fn check_access(
        &self,
        access_type: AccessType,
        offset: u64,
        len: u64,
    ) -> Result<(), u64> {
        debug_assert!(self.len >= offset + len);
        if let Some(bitmaps) = &self.bitmaps {
            let SendPtrU8(bitmap) = bitmaps[access_type as usize];
            let start = offset / PAGE_SIZE64;
            let end = (offset + len - 1) / PAGE_SIZE64;
            // FUTURE: consider optimizing this separately for multi-page and
            // single-page accesses.
            for gpn in start..=end {
                let bit_offset = self.bitmap_start as u64 + gpn;
                // SAFETY: the caller ensures that the bitmap is big enough and
                // valid for atomic read access from this thread.
                let bit = unsafe {
                    (*bitmap
                        .as_ptr()
                        .cast_const()
                        .cast::<AtomicU8>()
                        .add(bit_offset as usize / 8))
                    .load(Ordering::Relaxed)
                        & (1 << (bit_offset % 8))
                };
                if bit == 0 {
                    return Err((gpn * PAGE_SIZE64).saturating_sub(offset));
                }
            }
        }
        Ok(())
    }
}

/// The default implementation is [`GuestMemory::empty`].
impl Default for GuestMemory {
    fn default() -> Self {
        Self::empty()
    }
}

struct Empty;

// SAFETY: the mapping is empty, so all requirements are trivially satisfied.
unsafe impl GuestMemoryAccess for Empty {
    fn mapping(&self) -> Option<NonNull<u8>> {
        None
    }

    fn max_address(&self) -> u64 {
        0
    }
}

#[derive(Debug, Error)]
pub enum MultiRegionError {
    #[error("region size {0:#x} is not a power of 2")]
    NotPowerOfTwo(u64),
    #[error("region size {0:#x} is smaller than a page")]
    RegionSizeTooSmall(u64),
    #[error("too many regions ({region_count}) for region size {region_size:#x}; max is {max_region_count}")]
    TooManyRegions {
        region_count: usize,
        max_region_count: usize,
        region_size: u64,
    },
    #[error("backing size {backing_size:#x} is too large for region size {region_size:#x}")]
    BackingTooLarge { backing_size: u64, region_size: u64 },
}

impl GuestMemory {
    /// Returns a new instance using `imp` as the backing.
    ///
    /// `debug_name` is used to specify which guest memory is being accessed in
    /// error messages.
    pub fn new(debug_name: impl Into<Arc<str>>, imp: impl GuestMemoryAccess) -> Self {
        // Install signal handlers on unix if a mapping is present.
        //
        // Skip this on miri even when there is a mapping, since the mapping may
        // never be accessed by the code under test.
        if imp.mapping().is_some() && !cfg!(miri) {
            sparse_mmap::initialize_try_copy();
        }
        Self::new_inner(debug_name.into(), imp, false)
    }

    fn new_inner(debug_name: Arc<str>, imp: impl GuestMemoryAccess, allocated: bool) -> Self {
        let regions = vec![MemoryRegion::new(&imp)];
        Self {
            inner: Arc::new(GuestMemoryInner {
                imp,
                debug_name,
                region_def: RegionDefinition {
                    invalid_mask: 1 << 63,
                    region_mask: !0 >> 1,
                    region_bits: 63, // right shift of 64 isn't valid, so restrict the space
                },
                regions,
                allocated,
            }),
        }
    }

    /// Creates a new multi-region guest memory, made up of multiple mappings.
    /// This allows you to create a very large sparse layout (up to the limits
    /// of the VM's physical address space) without having to allocate an
    /// enormous amount of virtual address space.
    ///
    /// Each region will be `region_size` bytes and will start immediately after
    /// the last one. This must be a power of two, be at least a page in size,
    /// and cannot fill the full 64-bit address space.
    ///
    /// `imps` must be a list of [`GuestMemoryAccess`] implementations, one for
    /// each region. Use `None` if the corresponding region is empty.
    ///
    /// A region's mapping cannot fully fill the region. This is necessary to
    /// avoid callers expecting to be able to access a memory range that spans
    /// two regions.
    pub fn new_multi_region(
        debug_name: impl Into<Arc<str>>,
        region_size: u64,
        mut imps: Vec<Option<impl GuestMemoryAccess>>,
    ) -> Result<Self, MultiRegionError> {
        // Install signal handlers on unix.
        sparse_mmap::initialize_try_copy();

        if !region_size.is_power_of_two() {
            return Err(MultiRegionError::NotPowerOfTwo(region_size));
        }
        if region_size < PAGE_SIZE64 {
            return Err(MultiRegionError::RegionSizeTooSmall(region_size));
        }
        let region_bits = region_size.trailing_zeros();

        let max_region_count = 1 << (63 - region_bits);

        let region_count = imps.len().next_power_of_two();
        if region_count > max_region_count {
            return Err(MultiRegionError::TooManyRegions {
                region_count,
                max_region_count,
                region_size,
            });
        }

        let valid_bits = region_bits + region_count.trailing_zeros();
        assert!(valid_bits < 64);
        let invalid_mask = !0 << valid_bits;

        let mut regions = vec![MemoryRegion::default(); region_count];
        for (imp, region) in imps.iter().zip(&mut regions) {
            let Some(imp) = imp else { continue };
            let backing_size = imp.max_address();
            if backing_size > region_size {
                return Err(MultiRegionError::BackingTooLarge {
                    backing_size,
                    region_size,
                });
            }
            *region = MemoryRegion::new(imp);
        }

        let region_def = RegionDefinition {
            invalid_mask,
            region_mask: region_size - 1,
            region_bits,
        };

        imps.resize_with(region_count, || None);
        let imp = MultiRegionGuestMemoryAccess { imps, region_def };

        let inner = GuestMemoryInner {
            debug_name: debug_name.into(),
            region_def,
            regions,
            imp,
            allocated: false,
        };

        Ok(Self {
            inner: Arc::new(inner),
        })
    }

    /// Allocates a guest memory object on the heap with the given size in
    /// bytes.
    ///
    /// `size` will be rounded up to the page size. The backing buffer will be
    /// page aligned.
    ///
    /// The debug name in errors will be "heap". If you want to provide a
    /// different debug name, manually use `GuestMemory::new` with
    /// [`AlignedHeapMemory`].
    pub fn allocate(size: usize) -> Self {
        Self::new_inner("heap".into(), AlignedHeapMemory::new(size), true)
    }

    /// If this memory is unaliased and was created via
    /// [`GuestMemory::allocate`], returns the backing buffer.
    ///
    /// Returns `Err(self)` if there are other references to this memory (via
    /// `clone()`).
    pub fn into_inner_buf(self) -> Result<AlignedHeapMemory, Self> {
        if !self.inner.allocated {
            return Err(self);
        }
        // FUTURE: consider using `Any` and `Arc::downcast` once trait upcasting is stable.
        // SAFETY: the inner implementation is guaranteed to be a `AlignedHeapMemory`.
        let inner = unsafe {
            Arc::<GuestMemoryInner<AlignedHeapMemory>>::from_raw(Arc::into_raw(self.inner).cast())
        };
        let inner = Arc::try_unwrap(inner).map_err(|inner| Self { inner })?;
        Ok(inner.imp)
    }

    /// If this memory was created via [`GuestMemory::allocate`], returns a slice to
    /// the allocated buffer.
    pub fn inner_buf(&self) -> Option<&[AtomicU8]> {
        if !self.inner.allocated {
            return None;
        }
        // FUTURE: consider using `<dyn Any>::downcast` once trait upcasting is stable.
        // SAFETY: the inner implementation is guaranteed to be a `AlignedHeapMemory`.
        let inner = unsafe { &*core::ptr::from_ref(&self.inner.imp).cast::<AlignedHeapMemory>() };
        Some(inner)
    }

    /// If this memory was created via [`GuestMemory::allocate`] and there are
    /// no other references to it, returns a mutable slice to the backing
    /// buffer.
    pub fn inner_buf_mut(&mut self) -> Option<&mut [u8]> {
        if !self.inner.allocated {
            return None;
        }
        let inner = Arc::get_mut(&mut self.inner)?;
        // FUTURE: consider using `<dyn Any>::downcast` once trait upcasting is stable.
        // SAFETY: the inner implementation is guaranteed to be a `AlignedHeapMemory`.
        let imp = unsafe { &mut *core::ptr::from_mut(&mut inner.imp).cast::<AlignedHeapMemory>() };
        Some(imp.as_mut())
    }

    /// Returns an empty guest memory, which fails every operation.
    pub fn empty() -> Self {
        GuestMemory::new("empty", Empty)
    }

    fn wrap_err(
        &self,
        gpa_len: Option<(u64, u64)>,
        op: GuestMemoryOperation,
        err: GuestMemoryBackingError,
    ) -> GuestMemoryError {
        let range = gpa_len.map(|(gpa, len)| (gpa..gpa.wrapping_add(len)));
        GuestMemoryError::new(&self.inner.debug_name, range, op, err)
    }

    fn with_op<T>(
        &self,
        gpa_len: Option<(u64, u64)>,
        op: GuestMemoryOperation,
        f: impl FnOnce() -> Result<T, GuestMemoryBackingError>,
    ) -> Result<T, GuestMemoryError> {
        f().map_err(|err| self.wrap_err(gpa_len, op, err))
    }

    // Creates a smaller view into guest memory, constraining accesses within the new boundaries. For smaller ranges,
    // some memory implementations (e.g. HDV) may choose to lock the pages into memory for faster access. Locking
    // random guest memory may cause issues, so only opt in to this behavior when the range can be considered "owned"
    // by the caller.
    pub fn subrange(
        &self,
        offset: u64,
        len: u64,
        allow_preemptive_locking: bool,
    ) -> Result<GuestMemory, GuestMemoryError> {
        self.with_op(Some((offset, len)), GuestMemoryOperation::Subrange, || {
            if let Some(guest_memory) =
                self.inner
                    .imp
                    .subrange(offset, len, allow_preemptive_locking)?
            {
                Ok(guest_memory)
            } else {
                create_memory_subrange(self.inner.clone(), offset, len, allow_preemptive_locking)
            }
        })
    }

    /// Returns the mapping for all of guest memory.
    ///
    /// Returns `None` if there is more than one region or if the memory is not
    /// mapped.
    pub fn full_mapping(&self) -> Option<(*mut u8, usize)> {
        if let [region] = self.inner.regions.as_slice() {
            if region.bitmaps.is_some() {
                return None;
            }
            region
                .mapping
                .map(|SendPtrU8(ptr)| (ptr.as_ptr(), region.len as usize))
        } else {
            None
        }
    }

    /// Gets the IO address for DMAing to `gpa` from a user-mode driver not
    /// going through an IOMMU.
    pub fn iova(&self, gpa: u64) -> Option<u64> {
        let (region, offset, _) = self.inner.region(gpa, 1).ok()?;
        Some(region.base_iova? + offset)
    }

    /// Gets a pointer to the VA range for `gpa..gpa+len`.
    ///
    /// Returns `Ok(None)` if there is no mapping. Returns `Err(_)` if the
    /// memory is out of range.
    fn mapping_range(
        &self,
        access_type: AccessType,
        gpa: u64,
        len: usize,
    ) -> Result<Option<*mut u8>, GuestMemoryBackingError> {
        let (region, offset, _) = self.inner.region(gpa, len as u64)?;
        if let Some(SendPtrU8(ptr)) = region.mapping {
            loop {
                // SAFETY: offset + len is checked by `region()` to be inside the VA range.
                let fault_offset = unsafe {
                    match region.check_access(access_type, offset, len as u64) {
                        Ok(()) => return Ok(Some(ptr.as_ptr().add(offset as usize))),
                        Err(n) => n,
                    }
                };

                // Resolve the fault and try again.
                match self.inner.imp.page_fault(
                    gpa + fault_offset,
                    len - fault_offset as usize,
                    access_type == AccessType::Write,
                    true,
                ) {
                    PageFaultAction::Fail(err) => {
                        return Err(GuestMemoryBackingError::new(gpa + fault_offset, err))
                    }
                    PageFaultAction::Retry => {}
                    PageFaultAction::Fallback => break,
                }
            }
        }
        Ok(None)
    }

    /// Runs `f` with a pointer to the mapped memory. If `f` fails, tries to
    /// resolve the fault (failing on error), then loops.
    ///
    /// If there is no mapping for the memory, or if the fault handler requests
    /// it, call `fallback` instead. `fallback` will not be called unless `gpa`
    /// and `len` are in range.
    fn run_on_mapping<T, P>(
        &self,
        access_type: AccessType,
        gpa: u64,
        len: usize,
        mut param: P,
        mut f: impl FnMut(&mut P, *mut u8) -> Result<T, sparse_mmap::MemoryError>,
        fallback: impl FnOnce(&mut P) -> Result<T, GuestMemoryBackingError>,
    ) -> Result<T, GuestMemoryBackingError> {
        let Some(mapping) = self.mapping_range(access_type, gpa, len)? else {
            return fallback(&mut param);
        };

        // Try until the fault fails to resolve.
        loop {
            match f(&mut param, mapping) {
                Ok(t) => return Ok(t),
                Err(fault) => {
                    match self.inner.imp.page_fault(
                        gpa + fault.offset() as u64,
                        len - fault.offset(),
                        access_type == AccessType::Write,
                        false,
                    ) {
                        PageFaultAction::Fail(err) => {
                            return Err(GuestMemoryBackingError::new(
                                gpa + fault.offset() as u64,
                                err,
                            ))
                        }
                        PageFaultAction::Retry => {}
                        PageFaultAction::Fallback => return fallback(&mut param),
                    }
                }
            }
        }
    }

    unsafe fn write_ptr(
        &self,
        gpa: u64,
        src: *const u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        if len == 0 {
            return Ok(());
        }
        self.run_on_mapping(
            AccessType::Write,
            gpa,
            len,
            (),
            |(), dest| {
                // SAFETY: dest..dest+len is guaranteed to point to a reserved VA
                // range, and src..src+len is guaranteed by the caller to be a valid
                // buffer for reads.
                unsafe { sparse_mmap::try_copy(src, dest, len) }
            },
            |()| {
                // SAFETY: src..src+len is guaranteed by the caller to point to a valid
                // buffer for reads.
                unsafe { self.inner.imp.write_fallback(gpa, src, len) }
            },
        )
    }

    /// Writes `src` into guest memory at address `gpa`.
    pub fn write_at(&self, gpa: u64, src: &[u8]) -> Result<(), GuestMemoryError> {
        self.with_op(
            Some((gpa, src.len() as u64)),
            GuestMemoryOperation::Write,
            || self.write_at_inner(gpa, src),
        )
    }

    fn write_at_inner(&self, gpa: u64, src: &[u8]) -> Result<(), GuestMemoryBackingError> {
        // SAFETY: `src` is a valid buffer for reads.
        unsafe { self.write_ptr(gpa, src.as_ptr(), src.len()) }
    }

    /// Writes `src` into guest memory at address `gpa`.
    pub fn write_from_atomic(&self, gpa: u64, src: &[AtomicU8]) -> Result<(), GuestMemoryError> {
        self.with_op(
            Some((gpa, src.len() as u64)),
            GuestMemoryOperation::Write,
            || {
                // SAFETY: `src` is a valid buffer for reads.
                unsafe { self.write_ptr(gpa, src.as_ptr().cast(), src.len()) }
            },
        )
    }

    /// Writes `len` bytes of `val` into guest memory at address `gpa`.
    pub fn fill_at(&self, gpa: u64, val: u8, len: usize) -> Result<(), GuestMemoryError> {
        self.with_op(Some((gpa, len as u64)), GuestMemoryOperation::Fill, || {
            self.fill_at_inner(gpa, val, len)
        })
    }

    fn fill_at_inner(&self, gpa: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
        if len == 0 {
            return Ok(());
        }
        self.run_on_mapping(
            AccessType::Write,
            gpa,
            len,
            (),
            |(), dest| {
                // SAFETY: dest..dest+len is guaranteed to point to a reserved VA range.
                unsafe { sparse_mmap::try_write_bytes(dest, val, len) }
            },
            |()| self.inner.imp.fill_fallback(gpa, val, len),
        )
    }

    /// Reads from guest memory into `dest..dest+len`.
    ///
    /// # Safety
    /// The caller must ensure dest..dest+len is a valid buffer for writes.
    unsafe fn read_ptr(
        &self,
        gpa: u64,
        dest: *mut u8,
        len: usize,
    ) -> Result<(), GuestMemoryBackingError> {
        if len == 0 {
            return Ok(());
        }
        self.run_on_mapping(
            AccessType::Read,
            gpa,
            len,
            (),
            |(), src| {
                // SAFETY: src..src+len is guaranteed to point to a reserved VA
                // range, and dest..dest+len is guaranteed by the caller to be a
                // valid buffer for writes.
                unsafe { sparse_mmap::try_copy(src, dest, len) }
            },
            |()| {
                // SAFETY: dest..dest+len is guaranteed by the caller to point to a
                // valid buffer for writes.
                unsafe { self.inner.imp.read_fallback(gpa, dest, len) }
            },
        )
    }

    fn read_at_inner(&self, gpa: u64, dest: &mut [u8]) -> Result<(), GuestMemoryBackingError> {
        // SAFETY: `dest` is a valid buffer for writes.
        unsafe { self.read_ptr(gpa, dest.as_mut_ptr(), dest.len()) }
    }

    /// Reads from guest memory address `gpa` into `dest`.
    pub fn read_at(&self, gpa: u64, dest: &mut [u8]) -> Result<(), GuestMemoryError> {
        self.with_op(
            Some((gpa, dest.len() as u64)),
            GuestMemoryOperation::Read,
            || self.read_at_inner(gpa, dest),
        )
    }

    /// Reads from guest memory address `gpa` into `dest`.
    pub fn read_to_atomic(&self, gpa: u64, dest: &[AtomicU8]) -> Result<(), GuestMemoryError> {
        self.with_op(
            Some((gpa, dest.len() as u64)),
            GuestMemoryOperation::Read,
            // SAFETY: `dest` is a valid buffer for writes.
            || unsafe { self.read_ptr(gpa, dest.as_ptr() as *mut u8, dest.len()) },
        )
    }

    /// Writes an object to guest memory at address `gpa`.
    ///
    /// If the object is 1, 2, 4, or 8 bytes and the address is naturally
    /// aligned, then the write will be performed atomically. Here, this means
    /// that concurrent readers (via `read_plain`) cannot observe a torn write
    /// but will observe either the old or new value.
    ///
    /// The memory ordering of the write is unspecified.
    ///
    /// FUTURE: once we are on Rust 1.79, add a method specifically for atomic
    /// accesses that const asserts that the size is appropriate.
    pub fn write_plain<T: AsBytes>(&self, gpa: u64, b: &T) -> Result<(), GuestMemoryError> {
        // Note that this is const, so the match below will compile out.
        let len = size_of::<T>();
        self.with_op(Some((gpa, len as u64)), GuestMemoryOperation::Write, || {
            self.run_on_mapping(
                AccessType::Write,
                gpa,
                len,
                (),
                |(), dest| {
                    match len {
                        1 | 2 | 4 | 8 => {
                            // SAFETY: dest..dest+len is guaranteed to point to
                            // a reserved VA range.
                            unsafe { sparse_mmap::try_write_volatile(dest.cast(), b) }
                        }
                        _ => {
                            // SAFETY: dest..dest+len is guaranteed to point to
                            // a reserved VA range.
                            unsafe { sparse_mmap::try_copy(b.as_bytes().as_ptr(), dest, len) }
                        }
                    }
                },
                |()| {
                    // SAFETY: b is a valid buffer for reads.
                    unsafe {
                        self.inner
                            .imp
                            .write_fallback(gpa, b.as_bytes().as_ptr(), len)
                    }
                },
            )
        })
    }

    /// Attempts a sequentially-consistent compare exchange of the value at `gpa`.
    pub fn compare_exchange<T: AsBytes + FromBytes + Copy>(
        &self,
        gpa: u64,
        current: T,
        new: T,
    ) -> Result<Result<T, T>, GuestMemoryError> {
        let len = size_of_val(&new);
        self.with_op(
            Some((gpa, len as u64)),
            GuestMemoryOperation::CompareExchange,
            || {
                // Assume that if write is allowed, then read is allowed.
                self.run_on_mapping(
                    AccessType::Write,
                    gpa,
                    len,
                    (),
                    |(), dest| {
                        // SAFETY: dest..dest+len is guaranteed by the caller to be a valid
                        // buffer for writes.
                        unsafe { sparse_mmap::try_compare_exchange(dest.cast(), current, new) }
                    },
                    |()| {
                        let mut current = current;
                        let success = self.inner.imp.compare_exchange_fallback(
                            gpa,
                            current.as_bytes_mut(),
                            new.as_bytes(),
                        )?;

                        Ok(if success { Ok(new) } else { Err(current) })
                    },
                )
            },
        )
    }

    /// Attempts a sequentially-consistent compare exchange of the value at `gpa`.
    pub fn compare_exchange_bytes<T: AsBytes + FromBytes + ?Sized>(
        &self,
        gpa: u64,
        current: &mut T,
        new: &T,
    ) -> Result<bool, GuestMemoryError> {
        let len = size_of_val(new);
        assert_eq!(size_of_val(current), len);
        self.with_op(
            Some((gpa, len as u64)),
            GuestMemoryOperation::CompareExchange,
            || {
                // Assume that if write is allowed, then read is allowed.
                self.run_on_mapping(
                    AccessType::Write,
                    gpa,
                    len,
                    current,
                    |current, dest| {
                        // SAFETY: dest..dest+len is guaranteed by the caller to be a valid
                        // buffer for writes.
                        unsafe { sparse_mmap::try_compare_exchange_ref(dest, *current, new) }
                    },
                    |current| {
                        let success = self.inner.imp.compare_exchange_fallback(
                            gpa,
                            current.as_bytes_mut(),
                            new.as_bytes(),
                        )?;

                        Ok(success)
                    },
                )
            },
        )
    }

    /// Reads an object from guest memory at address `gpa`.
    ///
    /// If the object is 1, 2, 4, or 8 bytes and the address is naturally
    /// aligned, then the read will be performed atomically. Here, this means
    /// that when there is a concurrent writer, callers will observe either the
    /// old or new value, but not a torn read.
    ///
    /// The memory ordering of the read is unspecified.
    ///
    /// FUTURE: once we are on Rust 1.79, add a method specifically for atomic
    /// accesses that const asserts that the size is appropriate.
    pub fn read_plain<T: FromBytes>(&self, gpa: u64) -> Result<T, GuestMemoryError> {
        // Note that this is const, so the match below will compile out.
        let len = size_of::<T>();
        self.with_op(Some((gpa, len as u64)), GuestMemoryOperation::Read, || {
            self.run_on_mapping(
                AccessType::Read,
                gpa,
                len,
                (),
                |(), src| {
                    match len {
                        1 | 2 | 4 | 8 => {
                            // SAFETY: src..src+len is guaranteed to point to a reserved VA
                            // range.
                            unsafe { sparse_mmap::try_read_volatile(src.cast::<T>()) }
                        }
                        _ => {
                            let mut obj = std::mem::MaybeUninit::<T>::zeroed();
                            // SAFETY: src..src+len is guaranteed to point to a reserved VA
                            // range.
                            unsafe { sparse_mmap::try_copy(src, obj.as_mut_ptr().cast(), len)? };
                            // SAFETY: `obj` was fully initialized by `try_copy`.
                            Ok(unsafe { obj.assume_init() })
                        }
                    }
                },
                |()| {
                    let mut obj = std::mem::MaybeUninit::<T>::zeroed();
                    // SAFETY: dest..dest+len is guaranteed by the caller to point to a
                    // valid buffer for writes.
                    unsafe {
                        self.inner
                            .imp
                            .read_fallback(gpa, obj.as_mut_ptr().cast(), len)?;
                    }
                    // SAFETY: `obj` was fully initialized by `read_fallback`.
                    Ok(unsafe { obj.assume_init() })
                },
            )
        })
    }

    fn probe_page_for_lock(
        &self,
        with_kernel_access: bool,
        gpa: u64,
    ) -> Result<*const AtomicU8, GuestMemoryBackingError> {
        let (region, offset, _) = self.inner.region(gpa, 1)?;
        let Some(SendPtrU8(ptr)) = region.mapping else {
            return Err(GuestMemoryBackingError::new(gpa, NotLockable));
        };
        // Ensure the virtual address can be exposed.
        if with_kernel_access {
            self.inner.imp.expose_va(gpa, 1)?;
        }
        let mut b = [0];
        // FUTURE: check the correct bitmap for the access type, which needs to
        // be passed in.
        self.read_at_inner(gpa, &mut b)?;
        // SAFETY: the read_at call includes a check that ensures that
        // `gpa` is in the VA range.
        let page = unsafe { ptr.as_ptr().add(offset as usize) };
        Ok(page.cast())
    }

    pub fn lock_gpns(
        &self,
        with_kernel_access: bool,
        gpns: &[u64],
    ) -> Result<LockedPages, GuestMemoryError> {
        self.with_op(None, GuestMemoryOperation::Lock, || {
            let mut pages = Vec::with_capacity(gpns.len());
            for &gpn in gpns {
                let gpa = gpn_to_gpa(gpn).map_err(GuestMemoryBackingError::gpn)?;
                let page = self.probe_page_for_lock(with_kernel_access, gpa)?;
                pages.push(PagePtr(page));
            }
            Ok(LockedPages {
                pages: pages.into_boxed_slice(),
                _mem: self.inner.clone(),
            })
        })
    }

    pub fn probe_gpns(&self, gpns: &[u64]) -> Result<(), GuestMemoryError> {
        self.with_op(None, GuestMemoryOperation::Probe, || {
            for &gpn in gpns {
                let mut b = [0];
                self.read_at_inner(
                    gpn_to_gpa(gpn).map_err(GuestMemoryBackingError::gpn)?,
                    &mut b,
                )?;
            }
            Ok(())
        })
    }

    /// Check if a given GPA is readable or not.
    pub fn check_gpa_readable(&self, gpa: u64) -> bool {
        let mut b = [0];
        self.read_at_inner(gpa, &mut b).is_ok()
    }

    /// Gets a slice of guest memory assuming the memory was already locked via
    /// [`GuestMemory::lock_gpns`].
    ///
    /// This is dangerous--if the pages have not been locked, then it could
    /// cause an access violation or guest memory corruption.
    ///
    /// Note that this is not `unsafe` since this cannot cause memory corruption
    /// in this process. Even if there is an access violation, the underlying VA
    /// space is known to be reserved.
    ///
    /// Panics if the requested buffer is out of range.
    fn dangerous_access_pre_locked_memory(&self, gpa: u64, len: usize) -> &[AtomicU8] {
        let addr = self
            .mapping_range(AccessType::Write, gpa, len)
            .unwrap()
            .unwrap();
        // SAFETY: addr..addr+len is checked above to be a valid VA range. It's
        // possible some of the pages aren't mapped and will cause AVs at
        // runtime when accessed, but, as discussed above, at a language level
        // this cannot cause any safety issues.
        unsafe { std::slice::from_raw_parts(addr.cast(), len) }
    }

    fn op_range<F: FnMut(u64, Range<usize>) -> Result<(), GuestMemoryBackingError>>(
        &self,
        op: GuestMemoryOperation,
        range: &PagedRange<'_>,
        mut f: F,
    ) -> Result<(), GuestMemoryError> {
        self.with_op(None, op, || {
            let gpns = range.gpns();
            let offset = range.offset();

            // Perform the operation in three phases: the first page (if it is not a
            // full page), the full pages, and the last page (if it is not a full
            // page).
            let mut byte_index = 0;
            let mut len = range.len();
            let mut page = 0;
            if offset % PAGE_SIZE != 0 {
                let head_len = std::cmp::min(len, PAGE_SIZE - (offset % PAGE_SIZE));
                let addr = gpn_to_gpa(gpns[page]).map_err(GuestMemoryBackingError::gpn)?
                    + offset as u64 % PAGE_SIZE64;
                f(addr, byte_index..byte_index + head_len)?;
                byte_index += head_len;
                len -= head_len;
                page += 1;
            }
            while len >= PAGE_SIZE {
                f(
                    gpn_to_gpa(gpns[page]).map_err(GuestMemoryBackingError::gpn)?,
                    byte_index..byte_index + PAGE_SIZE,
                )?;
                byte_index += PAGE_SIZE;
                len -= PAGE_SIZE;
                page += 1;
            }
            if len > 0 {
                f(
                    gpn_to_gpa(gpns[page]).map_err(GuestMemoryBackingError::gpn)?,
                    byte_index..byte_index + len,
                )?;
            }

            Ok(())
        })
    }

    pub fn write_range(&self, range: &PagedRange<'_>, data: &[u8]) -> Result<(), GuestMemoryError> {
        assert!(data.len() == range.len());
        self.op_range(GuestMemoryOperation::Write, range, move |addr, r| {
            self.write_at_inner(addr, &data[r])
        })
    }

    pub fn fill_range(&self, range: &PagedRange<'_>, val: u8) -> Result<(), GuestMemoryError> {
        self.op_range(GuestMemoryOperation::Fill, range, move |addr, r| {
            self.fill_at_inner(addr, val, r.len())
        })
    }

    pub fn zero_range(&self, range: &PagedRange<'_>) -> Result<(), GuestMemoryError> {
        self.op_range(GuestMemoryOperation::Fill, range, move |addr, r| {
            self.fill_at_inner(addr, 0, r.len())
        })
    }

    pub fn read_range(
        &self,
        range: &PagedRange<'_>,
        data: &mut [u8],
    ) -> Result<(), GuestMemoryError> {
        assert!(data.len() == range.len());
        self.op_range(GuestMemoryOperation::Read, range, move |addr, r| {
            self.read_at_inner(addr, &mut data[r])
        })
    }

    pub fn write_range_from_atomic(
        &self,
        range: &PagedRange<'_>,
        data: &[AtomicU8],
    ) -> Result<(), GuestMemoryError> {
        assert!(data.len() == range.len());
        self.op_range(GuestMemoryOperation::Write, range, move |addr, r| {
            let src = &data[r];
            // SAFETY: `src` is a valid buffer for reads.
            unsafe { self.write_ptr(addr, src.as_ptr().cast(), src.len()) }
        })
    }

    pub fn read_range_to_atomic(
        &self,
        range: &PagedRange<'_>,
        data: &[AtomicU8],
    ) -> Result<(), GuestMemoryError> {
        assert!(data.len() == range.len());
        self.op_range(GuestMemoryOperation::Read, range, move |addr, r| {
            let dest = &data[r];
            // SAFETY: `dest` is a valid buffer for writes.
            unsafe { self.read_ptr(addr, dest.as_ptr().cast_mut().cast(), dest.len()) }
        })
    }

    /// Locks the guest pages spanned by the specified `PagedRange` for the `'static` lifetime.
    ///
    /// # Arguments
    /// * 'paged_range' - The guest memory range to lock.
    /// * 'locked_range' - Receives a list of VA ranges to which each contiguous physical sub-range in `paged_range`
    ///                    has been mapped. Must be initially empty.
    pub fn lock_range<T: LockedRange>(
        &self,
        paged_range: PagedRange<'_>,
        mut locked_range: T,
    ) -> Result<LockedRangeImpl<T>, GuestMemoryError> {
        self.with_op(None, GuestMemoryOperation::Lock, || {
            let gpns = paged_range.gpns();
            for &gpn in gpns {
                let gpa = gpn_to_gpa(gpn).map_err(GuestMemoryBackingError::gpn)?;
                self.probe_page_for_lock(true, gpa)?;
            }
            for range in paged_range.ranges() {
                let range = range.map_err(GuestMemoryBackingError::gpn)?;
                locked_range.push_sub_range(
                    self.dangerous_access_pre_locked_memory(range.start, range.len() as usize),
                );
            }
            Ok(LockedRangeImpl {
                _mem: self.inner.clone(),
                inner: locked_range,
            })
        })
    }
}

#[derive(Debug, Error)]
#[error("invalid guest page number {0:#x}")]
pub struct InvalidGpn(u64);

fn gpn_to_gpa(gpn: u64) -> Result<u64, InvalidGpn> {
    gpn.checked_mul(PAGE_SIZE64).ok_or(InvalidGpn(gpn))
}

#[derive(Debug, Copy, Clone, Default)]
struct RegionDefinition {
    invalid_mask: u64,
    region_mask: u64,
    region_bits: u32,
}

impl RegionDefinition {
    fn region(&self, gpa: u64, len: u64) -> Result<(usize, u64), GuestMemoryBackingError> {
        if (gpa | len) & self.invalid_mask != 0 {
            return Err(GuestMemoryBackingError::new(gpa, OutOfRange));
        }
        let offset = gpa & self.region_mask;
        if offset.wrapping_add(len) & !self.region_mask != 0 {
            return Err(GuestMemoryBackingError::new(gpa, OutOfRange));
        }
        let index = (gpa >> self.region_bits) as usize;
        Ok((index, offset))
    }
}

impl GuestMemoryInner {
    fn region(
        &self,
        gpa: u64,
        len: u64,
    ) -> Result<(&MemoryRegion, u64, usize), GuestMemoryBackingError> {
        let (index, offset) = self.region_def.region(gpa, len)?;
        let region = &self.regions[index];
        if offset + len > region.len {
            return Err(GuestMemoryBackingError::new(gpa, OutOfRange));
        }
        Ok((&self.regions[index], offset, index))
    }
}

#[derive(Clone)]
pub struct LockedPages {
    pages: Box<[PagePtr]>,
    // maintain a reference to the backing memory
    _mem: Arc<GuestMemoryInner>,
}

impl Debug for LockedPages {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("LockedPages")
            .field("page_count", &self.pages.len())
            .finish()
    }
}

#[derive(Copy, Clone, Debug)]
// Field is read via slice transmute and pointer casts, not actually dead.
struct PagePtr(#[allow(dead_code)] *const AtomicU8);

// SAFETY: PagePtr is just a pointer with no methods and has no inherent safety
// constraints.
unsafe impl Send for PagePtr {}
// SAFETY: see above comment
unsafe impl Sync for PagePtr {}

pub type Page = [AtomicU8; PAGE_SIZE];

impl LockedPages {
    #[inline]
    pub fn pages(&self) -> &[&Page] {
        // SAFETY: PagePtr is just a pointer to a Page. The pages are kept alive by
        // the reference in _mem, and the lifetimes here ensure the LockedPages outlives
        // the slice.
        unsafe { std::slice::from_raw_parts(self.pages.as_ptr().cast::<&Page>(), self.pages.len()) }
    }
}

impl<'a> AsRef<[&'a Page]> for &'a LockedPages {
    fn as_ref(&self) -> &[&'a Page] {
        self.pages()
    }
}

/// Represents a range of locked guest pages as an ordered list of the VA sub-ranges
/// to which the guest pages are mapped.
/// The range may only partially span the first and last page and must fully span all
/// intermediate pages.
pub trait LockedRange {
    /// Adds a sub-range to this range.
    fn push_sub_range(&mut self, sub_range: &[AtomicU8]);

    /// Removes and returns the last sub range.
    fn pop_sub_range(&mut self) -> Option<(*const AtomicU8, usize)>;
}

pub struct LockedRangeImpl<T: LockedRange> {
    _mem: Arc<GuestMemoryInner>,
    inner: T,
}

impl<T: LockedRange> LockedRangeImpl<T> {
    pub fn get(&self) -> &T {
        &self.inner
    }
}

impl<T: LockedRange> Drop for LockedRangeImpl<T> {
    fn drop(&mut self) {
        // FUTURE: Remove and unlock all sub ranges. This is currently
        // not necessary yet as only fully mapped VMs are supported.
        // while let Some(sub_range) = self.inner.pop_sub_range() {
        //     call self._mem to unlock the sub-range, individually or in batches
        // }
    }
}

#[derive(Debug, Error)]
pub enum AccessError {
    #[error("memory access error")]
    Memory(#[from] GuestMemoryError),
    #[error("out of range: {0:#x} < {1:#x}")]
    OutOfRange(usize, usize),
    #[error("write attempted to read-only memory")]
    ReadOnly,
}

pub trait MemoryRead {
    fn read(&mut self, data: &mut [u8]) -> Result<&mut Self, AccessError>;
    fn skip(&mut self, len: usize) -> Result<&mut Self, AccessError>;
    fn len(&self) -> usize;

    fn read_plain<T: AsBytes + FromBytes>(&mut self) -> Result<T, AccessError> {
        let mut value: T = FromZeroes::new_zeroed();
        self.read(value.as_bytes_mut())?;
        Ok(value)
    }

    fn read_n<T: AsBytes + FromBytes + Copy>(&mut self, len: usize) -> Result<Vec<T>, AccessError> {
        let mut value = vec![FromZeroes::new_zeroed(); len];
        self.read(value.as_bytes_mut())?;
        Ok(value)
    }

    fn read_all(&mut self) -> Result<Vec<u8>, AccessError> {
        let mut value = vec![0; self.len()];
        self.read(&mut value)?;
        Ok(value)
    }

    fn limit(self, len: usize) -> Limit<Self>
    where
        Self: Sized,
    {
        let len = len.min(self.len());
        Limit { inner: self, len }
    }
}

pub trait MemoryWrite {
    fn write(&mut self, data: &[u8]) -> Result<(), AccessError>;
    fn zero(&mut self, len: usize) -> Result<(), AccessError> {
        self.fill(0, len)
    }
    fn fill(&mut self, val: u8, len: usize) -> Result<(), AccessError>;
    fn len(&self) -> usize;

    fn limit(self, len: usize) -> Limit<Self>
    where
        Self: Sized,
    {
        let len = len.min(self.len());
        Limit { inner: self, len }
    }
}

impl MemoryRead for &'_ [u8] {
    fn read(&mut self, data: &mut [u8]) -> Result<&mut Self, AccessError> {
        if self.len() < data.len() {
            return Err(AccessError::OutOfRange(self.len(), data.len()));
        }
        let (source, rest) = self.split_at(data.len());
        data.copy_from_slice(source);
        *self = rest;
        Ok(self)
    }

    fn skip(&mut self, len: usize) -> Result<&mut Self, AccessError> {
        if self.len() < len {
            return Err(AccessError::OutOfRange(self.len(), len));
        }
        *self = &self[len..];
        Ok(self)
    }

    fn len(&self) -> usize {
        <[u8]>::len(self)
    }
}

impl MemoryWrite for &mut [u8] {
    fn write(&mut self, data: &[u8]) -> Result<(), AccessError> {
        if self.len() < data.len() {
            return Err(AccessError::OutOfRange(self.len(), data.len()));
        }
        let (dest, rest) = std::mem::take(self).split_at_mut(data.len());
        dest.copy_from_slice(data);
        *self = rest;
        Ok(())
    }

    fn fill(&mut self, val: u8, len: usize) -> Result<(), AccessError> {
        if self.len() < len {
            return Err(AccessError::OutOfRange(self.len(), len));
        }
        let (dest, rest) = std::mem::take(self).split_at_mut(len);
        dest.fill(val);
        *self = rest;
        Ok(())
    }

    fn len(&self) -> usize {
        <[u8]>::len(self)
    }
}

#[derive(Debug, Clone)]
pub struct Limit<T> {
    inner: T,
    len: usize,
}

impl<T: MemoryRead> MemoryRead for Limit<T> {
    fn read(&mut self, data: &mut [u8]) -> Result<&mut Self, AccessError> {
        let len = data.len();
        if len > self.len {
            return Err(AccessError::OutOfRange(self.len, len));
        }
        self.inner.read(data)?;
        self.len -= len;
        Ok(self)
    }

    fn skip(&mut self, len: usize) -> Result<&mut Self, AccessError> {
        if len > self.len {
            return Err(AccessError::OutOfRange(self.len, len));
        }
        self.inner.skip(len)?;
        self.len -= len;
        Ok(self)
    }

    fn len(&self) -> usize {
        self.len
    }
}

impl<T: MemoryWrite> MemoryWrite for Limit<T> {
    fn write(&mut self, data: &[u8]) -> Result<(), AccessError> {
        let len = data.len();
        if len > self.len {
            return Err(AccessError::OutOfRange(self.len, len));
        }
        self.inner.write(data)?;
        self.len -= len;
        Ok(())
    }

    fn fill(&mut self, val: u8, len: usize) -> Result<(), AccessError> {
        if len > self.len {
            return Err(AccessError::OutOfRange(self.len, len));
        }
        self.inner.fill(val, len)?;
        self.len -= len;
        Ok(())
    }

    fn len(&self) -> usize {
        self.len
    }
}

/// Trait implemented to allow mapping and unmapping a region of memory at
/// a particular guest address.
pub trait MappableGuestMemory: Send + Sync {
    /// Maps the memory into the guest.
    ///
    /// `writable` specifies whether the guest can write to the memory region.
    /// If a guest tries to write to a non-writable region, the virtual
    /// processor will exit for MMIO handling.
    fn map_to_guest(&mut self, gpa: u64, writable: bool) -> io::Result<()>;

    fn unmap_from_guest(&mut self);
}

/// Trait implemented for a region of memory that can have memory mapped into
/// it.
pub trait MappedMemoryRegion: Send + Sync {
    /// Maps an object at `offset` in the region.
    ///
    /// Behaves like mmap--overwrites and splits existing mappings.
    fn map(
        &self,
        offset: usize,
        section: &dyn AsMappableRef,
        file_offset: u64,
        len: usize,
        writable: bool,
    ) -> io::Result<()>;

    /// Unmaps any mappings in the specified range within the region.
    fn unmap(&self, offset: usize, len: usize) -> io::Result<()>;
}

/// Trait implemented to allow the creation of memory regions.
pub trait MemoryMapper: Send + Sync {
    /// Creates a new memory region that can later be mapped into the guest.
    ///
    /// Returns both an interface for mapping/unmapping the region and for
    /// adding internal mappings.
    fn new_region(
        &self,
        len: usize,
        debug_name: String,
    ) -> io::Result<(Box<dyn MappableGuestMemory>, Arc<dyn MappedMemoryRegion>)>;
}

/// Doorbell provides a mechanism to register for notifications on writes to specific addresses in guest memory.
pub trait DoorbellRegistration: Send + Sync {
    /// Register a doorbell event.
    fn register_doorbell(
        &self,
        guest_address: u64,
        value: Option<u64>,
        length: Option<u32>,
        event: &Event,
    ) -> io::Result<Box<dyn Send + Sync>>;
}

/// Trait to map a ROM at one or more locations in guest memory.
pub trait MapRom: Send + Sync {
    /// Maps the specified portion of the ROM into guest memory at `gpa`.
    ///
    /// The returned object will implicitly unmap the ROM when dropped.
    fn map_rom(&self, gpa: u64, offset: u64, len: u64) -> io::Result<Box<dyn UnmapRom>>;

    /// Returns the length of the ROM in bytes.
    fn len(&self) -> u64;
}

/// Trait to unmap a ROM from guest memory.
pub trait UnmapRom: Send + Sync {
    /// Unmaps the ROM from guest memory.
    fn unmap_rom(self);
}

#[cfg(test)]
#[allow(clippy::undocumented_unsafe_blocks)]
mod tests {
    use crate::BitmapInfo;
    use crate::GuestMemory;
    use crate::PageFaultAction;
    use crate::PAGE_SIZE64;
    use sparse_mmap::SparseMapping;
    use std::ptr::NonNull;
    use std::sync::Arc;
    use thiserror::Error;

    /// An implementation of a GuestMemoryAccess trait that expects all of
    /// guest memory to be mapped at a given base, with mmap or the Windows
    /// equivalent. Pages that are not backed by RAM will return failure
    /// when attempting to access them.
    pub struct GuestMemoryMapping {
        mapping: SparseMapping,
        bitmap: Option<Vec<u8>>,
    }

    unsafe impl crate::GuestMemoryAccess for GuestMemoryMapping {
        fn mapping(&self) -> Option<NonNull<u8>> {
            NonNull::new(self.mapping.as_ptr().cast())
        }

        fn max_address(&self) -> u64 {
            self.mapping.len() as u64
        }

        fn access_bitmap(&self) -> Option<BitmapInfo> {
            self.bitmap.as_ref().map(|bm| BitmapInfo {
                read_bitmap: NonNull::new(bm.as_ptr().cast_mut()).unwrap(),
                write_bitmap: NonNull::new(bm.as_ptr().cast_mut()).unwrap(),
                execute_bitmap: NonNull::new(bm.as_ptr().cast_mut()).unwrap(),
                bit_offset: 0,
            })
        }
    }

    const PAGE_SIZE: usize = 4096;
    const SIZE_1MB: usize = 1048576;

    /// Create a test guest layout:
    /// 0           -> 1MB          RAM
    /// 1MB         -> 2MB          empty
    /// 2MB         -> 3MB          RAM
    /// 3MB         -> 3MB + 4K     empty
    /// 3MB + 4K    -> 4MB          RAM
    fn create_test_mapping() -> GuestMemoryMapping {
        let mapping = SparseMapping::new(SIZE_1MB * 4).unwrap();
        mapping.alloc(0, SIZE_1MB).unwrap();
        mapping.alloc(2 * SIZE_1MB, SIZE_1MB).unwrap();
        mapping
            .alloc(3 * SIZE_1MB + PAGE_SIZE, SIZE_1MB - PAGE_SIZE)
            .unwrap();

        GuestMemoryMapping {
            mapping,
            bitmap: None,
        }
    }

    #[test]
    fn test_basic_read_write() {
        let mapping = create_test_mapping();
        let gm = GuestMemory::new("test", mapping);

        // Test reading at 0.
        let addr = 0;
        let result = gm.read_plain::<u8>(addr);
        assert_eq!(result.unwrap(), 0);

        // Test read/write to first page
        let write_buffer = [1, 2, 3, 4, 5];
        let mut read_buffer = [0; 5];
        gm.write_at(0, &write_buffer).unwrap();
        gm.read_at(0, &mut read_buffer).unwrap();
        assert_eq!(write_buffer, read_buffer);
        assert_eq!(gm.read_plain::<u8>(0).unwrap(), 1);
        assert_eq!(gm.read_plain::<u8>(1).unwrap(), 2);
        assert_eq!(gm.read_plain::<u8>(2).unwrap(), 3);
        assert_eq!(gm.read_plain::<u8>(3).unwrap(), 4);
        assert_eq!(gm.read_plain::<u8>(4).unwrap(), 5);

        // Test read/write to page at 2MB
        let addr = 2 * SIZE_1MB as u64;
        let write_buffer: Vec<u8> = (0..PAGE_SIZE).map(|x| x as u8).collect();
        let mut read_buffer: Vec<u8> = (0..PAGE_SIZE).map(|_| 0).collect();
        gm.write_at(addr, write_buffer.as_slice()).unwrap();
        gm.read_at(addr, read_buffer.as_mut_slice()).unwrap();
        assert_eq!(write_buffer, read_buffer);

        // Test read/write to first 1MB
        let write_buffer: Vec<u8> = (0..SIZE_1MB).map(|x| x as u8).collect();
        let mut read_buffer: Vec<u8> = (0..SIZE_1MB).map(|_| 0).collect();
        gm.write_at(addr, write_buffer.as_slice()).unwrap();
        gm.read_at(addr, read_buffer.as_mut_slice()).unwrap();
        assert_eq!(write_buffer, read_buffer);

        // Test bad read at 1MB
        let addr = SIZE_1MB as u64;
        let result = gm.read_plain::<u8>(addr);
        assert!(result.is_err());
    }

    #[test]
    fn test_multi() {
        let len = SIZE_1MB * 4;
        let mapping = SparseMapping::new(len).unwrap();
        mapping.alloc(0, len).unwrap();
        let mapping = Arc::new(GuestMemoryMapping {
            mapping,
            bitmap: None,
        });
        let region_len = 1 << 30;
        let gm = GuestMemory::new_multi_region(
            "test",
            region_len,
            vec![Some(mapping.clone()), None, Some(mapping.clone())],
        )
        .unwrap();

        let mut b = [0];
        let len = len as u64;
        gm.read_at(0, &mut b).unwrap();
        gm.read_at(len, &mut b).unwrap_err();
        gm.read_at(region_len, &mut b).unwrap_err();
        gm.read_at(2 * region_len, &mut b).unwrap();
        gm.read_at(2 * region_len + len, &mut b).unwrap_err();
        gm.read_at(3 * region_len, &mut b).unwrap_err();
    }

    #[test]
    fn test_bitmap() {
        let len = PAGE_SIZE * 4;
        let mapping = SparseMapping::new(len).unwrap();
        mapping.alloc(0, len).unwrap();
        let bitmap = vec![0b0101];
        let mapping = Arc::new(GuestMemoryMapping {
            mapping,
            bitmap: Some(bitmap),
        });
        let gm = GuestMemory::new("test", mapping);

        gm.read_plain::<[u8; 1]>(0).unwrap();
        gm.read_plain::<[u8; 1]>(PAGE_SIZE64 - 1).unwrap();
        gm.read_plain::<[u8; 2]>(PAGE_SIZE64 - 1).unwrap_err();
        gm.read_plain::<[u8; 1]>(PAGE_SIZE64).unwrap_err();
        gm.read_plain::<[u8; 1]>(PAGE_SIZE64 * 2).unwrap();
        gm.read_plain::<[u8; PAGE_SIZE * 2]>(0).unwrap_err();
    }

    struct FaultingMapping {
        mapping: SparseMapping,
    }

    #[derive(Debug, Error)]
    #[error("fault")]
    struct Fault;

    unsafe impl crate::GuestMemoryAccess for FaultingMapping {
        fn mapping(&self) -> Option<NonNull<u8>> {
            NonNull::new(self.mapping.as_ptr().cast())
        }

        fn max_address(&self) -> u64 {
            self.mapping.len() as u64
        }

        fn page_fault(
            &self,
            address: u64,
            _len: usize,
            write: bool,
            bitmap_failure: bool,
        ) -> PageFaultAction {
            assert!(!bitmap_failure);
            let qlen = self.mapping.len() as u64 / 4;
            if address < qlen || address >= 3 * qlen {
                return PageFaultAction::Fail(Fault.into());
            }
            let page_address = (address as usize) & !(PAGE_SIZE - 1);
            if address >= 2 * qlen {
                if write {
                    return PageFaultAction::Fail(Fault.into());
                }
                self.mapping.map_zero(page_address, PAGE_SIZE).unwrap();
            } else {
                self.mapping.alloc(page_address, PAGE_SIZE).unwrap();
            }
            PageFaultAction::Retry
        }
    }

    impl FaultingMapping {
        fn new(len: usize) -> Self {
            let mapping = SparseMapping::new(len).unwrap();
            FaultingMapping { mapping }
        }
    }

    #[test]
    fn test_fault() {
        let len = PAGE_SIZE * 4;
        let mapping = FaultingMapping::new(len);
        let gm = GuestMemory::new("test", mapping);

        gm.write_plain::<u8>(0, &0).unwrap_err();
        gm.read_plain::<u8>(PAGE_SIZE64 - 1).unwrap_err();
        gm.read_plain::<u8>(PAGE_SIZE64).unwrap();
        gm.write_plain::<u8>(PAGE_SIZE64, &0).unwrap();
        gm.write_plain::<u16>(PAGE_SIZE64 * 3 - 1, &0).unwrap_err();
        gm.read_plain::<u16>(PAGE_SIZE64 * 3 - 1).unwrap_err();
        gm.read_plain::<u8>(PAGE_SIZE64 * 3 - 1).unwrap();
        gm.write_plain::<u8>(PAGE_SIZE64 * 3 - 1, &0).unwrap_err();
    }

    #[test]
    fn test_allocated() {
        let mut gm = GuestMemory::allocate(0x10000);
        let pattern = [0x42; 0x10000];
        gm.write_at(0, &pattern).unwrap();
        assert_eq!(gm.inner_buf_mut().unwrap(), &pattern);
        gm.inner_buf().unwrap();
        let gm2 = gm.clone();
        assert!(gm.inner_buf_mut().is_none());
        gm.inner_buf().unwrap();
        let mut gm = gm.into_inner_buf().unwrap_err();
        drop(gm2);
        assert_eq!(gm.inner_buf_mut().unwrap(), &pattern);
        gm.into_inner_buf().unwrap();
    }
}