guestmem/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Interfaces to read and write guest memory.
// UNSAFETY: This crate's whole purpose is manual memory mapping and management.
#![expect(unsafe_code)]
pub mod ranges;
use self::ranges::PagedRange;
use inspect::Inspect;
use pal_event::Event;
use sparse_mmap::AsMappableRef;
use std::fmt::Debug;
use std::io;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ops::Range;
use std::ptr::NonNull;
use std::sync::atomic::AtomicU8;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use thiserror::Error;
use zerocopy::AsBytes;
use zerocopy::FromBytes;
use zerocopy::FromZeroes;
// Effective page size for page-related operations in this crate.
pub const PAGE_SIZE: usize = 4096;
const PAGE_SIZE64: u64 = 4096;
/// A memory access error returned by one of the [`GuestMemory`] methods.
#[derive(Debug, Error)]
#[error(transparent)]
pub struct GuestMemoryError(Box<GuestMemoryErrorInner>);
impl GuestMemoryError {
fn new(
debug_name: &Arc<str>,
range: Option<Range<u64>>,
op: GuestMemoryOperation,
err: GuestMemoryBackingError,
) -> Self {
GuestMemoryError(Box::new(GuestMemoryErrorInner {
op,
debug_name: debug_name.clone(),
range,
gpa: (err.gpa != INVALID_ERROR_GPA).then_some(err.gpa),
err: err.err,
}))
}
}
#[derive(Debug, Copy, Clone)]
enum GuestMemoryOperation {
Read,
Write,
Fill,
CompareExchange,
Lock,
Subrange,
Probe,
}
impl std::fmt::Display for GuestMemoryOperation {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.pad(match self {
GuestMemoryOperation::Read => "read",
GuestMemoryOperation::Write => "write",
GuestMemoryOperation::Fill => "fill",
GuestMemoryOperation::CompareExchange => "compare exchange",
GuestMemoryOperation::Lock => "lock",
GuestMemoryOperation::Subrange => "subrange",
GuestMemoryOperation::Probe => "probe",
})
}
}
#[derive(Debug, Error)]
struct GuestMemoryErrorInner {
op: GuestMemoryOperation,
debug_name: Arc<str>,
range: Option<Range<u64>>,
gpa: Option<u64>,
#[source]
err: Box<dyn std::error::Error + Send + Sync>,
}
impl std::fmt::Display for GuestMemoryErrorInner {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"guest memory '{debug_name}': {op} error: failed to access ",
debug_name = self.debug_name,
op = self.op
)?;
if let Some(range) = &self.range {
write!(f, "{:#x}-{:#x}", range.start, range.end)?;
} else {
f.write_str("memory")?;
}
// Include the precise GPA if provided and different from the start of
// the range.
if let Some(gpa) = self.gpa {
if self.range.as_ref().map_or(true, |range| range.start != gpa) {
write!(f, " at {:#x}", gpa)?;
}
}
Ok(())
}
}
/// A memory access error returned by a [`GuestMemoryAccess`] trait method.
#[derive(Debug)]
pub struct GuestMemoryBackingError {
gpa: u64,
err: Box<dyn std::error::Error + Send + Sync>,
}
/// Used to avoid needing an `Option` for [`GuestMemoryBackingError::gpa`], to
/// save size in hot paths.
const INVALID_ERROR_GPA: u64 = !0;
impl GuestMemoryBackingError {
/// Returns a new error for a memory access failure at address `gpa`.
pub fn new(gpa: u64, err: impl Into<Box<dyn std::error::Error + Send + Sync>>) -> Self {
// `gpa` might incorrectly be INVALID_ERROR_GPA; this is harmless (just
// affecting the error message), so don't assert on it in case this is
// an untrusted value in some path.
Self {
gpa,
err: err.into(),
}
}
fn gpn(err: InvalidGpn) -> Self {
Self {
gpa: INVALID_ERROR_GPA,
err: err.into(),
}
}
}
#[derive(Debug, Error)]
#[error("no memory at address")]
struct OutOfRange;
#[derive(Debug, Error)]
#[error("memory not lockable")]
struct NotLockable;
#[derive(Debug, Error)]
#[error("no fallback for this operation")]
struct NoFallback;
#[derive(Debug, Error)]
#[error("the specified page is not mapped")]
struct NotMapped;
#[derive(Debug, Error)]
#[error("page inaccessible in bitmap")]
struct BitmapFailure;
/// A trait for a guest memory backing that is fully available via a virtual
/// address mapping, as opposed to the fallback functions such as
/// [`GuestMemoryAccess::read_fallback`].
///
/// By implementing this trait, a type guarantees that its
/// [`GuestMemoryAccess::mapping`] will return `Some(_)` and that all of its
/// memory can be accessed through that mapping, without needing to call the
/// fallback functions.
pub trait LinearGuestMemory: GuestMemoryAccess {}
// SAFETY: the allocation will stay valid for the lifetime of the object.
unsafe impl GuestMemoryAccess for sparse_mmap::alloc::SharedMem {
fn mapping(&self) -> Option<NonNull<u8>> {
NonNull::new(self.as_ptr().cast_mut().cast())
}
fn max_address(&self) -> u64 {
self.len() as u64
}
}
impl LinearGuestMemory for sparse_mmap::alloc::SharedMem {}
/// A page-aligned heap allocation for use with [`GuestMemory`].
pub struct AlignedHeapMemory {
pages: Box<[AlignedPage]>,
}
impl Debug for AlignedHeapMemory {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("AlignedHeapMemory")
.field("len", &self.len())
.finish()
}
}
#[repr(C, align(4096))]
struct AlignedPage([AtomicU8; PAGE_SIZE]);
impl AlignedHeapMemory {
/// Allocates a new memory of `size` bytes, rounded up to a page size.
pub fn new(size: usize) -> Self {
#[allow(clippy::declare_interior_mutable_const)] // <https://github.com/rust-lang/rust-clippy/issues/7665>
const ZERO: AtomicU8 = AtomicU8::new(0);
#[allow(clippy::declare_interior_mutable_const)]
const ZERO_PAGE: AlignedPage = AlignedPage([ZERO; PAGE_SIZE]);
let mut pages = Vec::new();
pages.resize_with(size.div_ceil(PAGE_SIZE), || ZERO_PAGE);
Self {
pages: pages.into(),
}
}
/// Returns the length of the memory in bytes.
pub fn len(&self) -> usize {
self.pages.len() * PAGE_SIZE
}
/// Returns an immutable slice of bytes.
///
/// This must take `&mut self` since the buffer is mutable via interior
/// mutability with just `&self`.
pub fn as_bytes(&mut self) -> &[u8] {
self.as_mut()
}
/// Returns a mutable slice of bytes.
pub fn as_bytes_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl Deref for AlignedHeapMemory {
type Target = [AtomicU8];
fn deref(&self) -> &Self::Target {
// SAFETY: the buffer has the correct size and validity.
unsafe { std::slice::from_raw_parts(self.pages.as_ptr().cast(), self.len()) }
}
}
impl DerefMut for AlignedHeapMemory {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: the buffer is unaliased and valid.
unsafe { std::slice::from_raw_parts_mut(self.pages.as_mut_ptr().cast(), self.len()) }
}
}
impl AsRef<[AtomicU8]> for AlignedHeapMemory {
fn as_ref(&self) -> &[AtomicU8] {
self
}
}
impl AsMut<[AtomicU8]> for AlignedHeapMemory {
fn as_mut(&mut self) -> &mut [AtomicU8] {
self
}
}
impl AsMut<[u8]> for AlignedHeapMemory {
fn as_mut(&mut self) -> &mut [u8] {
// FUTURE: use AtomicU8::get_mut_slice once stabilized.
// SAFETY: the buffer is unaliased, so it is fine to cast away the atomicness of the
// slice.
unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr().cast(), self.len()) }
}
}
// SAFETY: the allocation remains alive and valid for the lifetime of the
// object.
unsafe impl GuestMemoryAccess for AlignedHeapMemory {
fn mapping(&self) -> Option<NonNull<u8>> {
NonNull::new(self.pages.as_ptr().cast_mut().cast())
}
fn max_address(&self) -> u64 {
(self.pages.len() * PAGE_SIZE) as u64
}
}
impl LinearGuestMemory for AlignedHeapMemory {}
/// A trait for a guest memory backing.
///
/// Guest memory may be backed by a virtual memory mapping, in which case this
/// trait can provide the VA and length of that mapping. Alternatively, it may
/// be backed by some other means, in which case this trait can provide fallback
/// methods for reading and writing memory.
///
/// Memory access should first be attempted via the virtual address mapping. If
/// this fails or is not present, the caller should fall back to `read_fallback`
/// or `write_fallback`. This allows an implementation to have a fast path using
/// the mapping, and a slow path using the fallback functions.
///
/// # Safety
///
/// The implementor must follow the contract for each method.
pub unsafe trait GuestMemoryAccess: 'static + Send + Sync {
/// Returns a stable VA mapping for guest memory.
///
/// The size of the mapping is the same as `max_address`.
///
/// The VA is guaranteed to remain reserved, but individual ranges may be
/// uncommitted.
fn mapping(&self) -> Option<NonNull<u8>>;
/// The maximum address that can be passed to the `*_fallback` methods, as
/// well as the maximum offset into the VA range described by `mapping`.
fn max_address(&self) -> u64;
/// The bitmaps to check for validity, one bit per page. If a bit is set,
/// then the page is valid to access via the mapping; if it is clear, then
/// the page will not be accessed.
///
/// The bitmaps must be at least `ceil(bitmap_start + max_address() /
/// PAGE_SIZE)` bits long, and they must be valid for atomic read access for
/// the lifetime of this object from any thread.
///
/// The bitmaps are only checked if there is a mapping. If the bitmap check
/// fails, then the associated `*_fallback` routine is called to handle the
/// error.
///
/// TODO: add a synchronization scheme.
fn access_bitmap(&self) -> Option<BitmapInfo> {
None
}
// Returns an accessor for a subrange, or `None` to use the default
// implementation.
fn subrange(
&self,
offset: u64,
len: u64,
allow_preemptive_locking: bool,
) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
let _ = (offset, len, allow_preemptive_locking);
Ok(None)
}
/// Called when access to memory via the mapped range fails, either due to a
/// bitmap failure or due to a failure when accessing the virtual address.
///
/// `address` is the address where the access failed. `len` is the remainder
/// of the access; it is not necessarily the case that all `len` bytes are
/// inaccessible in the bitmap or mapping.
///
/// Returns whether the faulting operation should be retried, failed, or that
/// one of the fallback operations (e.g. `read_fallback`) should be called.
fn page_fault(
&self,
address: u64,
len: usize,
write: bool,
bitmap_failure: bool,
) -> PageFaultAction {
let _ = (address, len, write);
if bitmap_failure {
PageFaultAction::Fail(BitmapFailure.into())
} else {
PageFaultAction::Fail(NotMapped.into())
}
}
/// Fallback called if a read fails via direct access to `mapped_range`.
///
/// This is only called if `mapping()` returns `None` or if `page_fault()`
/// returns `PageFaultAction::Fallback`.
///
/// Implementors must ensure that `dest[..len]` is fully initialized on
/// successful return.
///
/// # Safety
/// The caller must ensure that `dest[..len]` is valid for write. Note,
/// however, that `dest` might be aliased by other threads, the guest, or
/// the kernel.
unsafe fn read_fallback(
&self,
addr: u64,
dest: *mut u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
let _ = (dest, len);
Err(GuestMemoryBackingError::new(addr, NoFallback))
}
/// Fallback called if a write fails via direct access to `mapped_range`.
///
/// This is only called if `mapping()` returns `None` or if `page_fault()`
/// returns `PageFaultAction::Fallback`.
///
/// # Safety
/// The caller must ensure that `src[..len]` is valid for read. Note,
/// however, that `src` might be aliased by other threads, the guest, or
/// the kernel.
unsafe fn write_fallback(
&self,
addr: u64,
src: *const u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
let _ = (src, len);
Err(GuestMemoryBackingError::new(addr, NoFallback))
}
/// Fallback called if a fill fails via direct access to `mapped_range`.
///
/// This is only called if `mapping()` returns `None` or if `page_fault()`
/// returns `PageFaultAction::Fallback`.
fn fill_fallback(&self, addr: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
let _ = (val, len);
Err(GuestMemoryBackingError::new(addr, NoFallback))
}
/// Fallback called if a compare exchange fails via direct access to `mapped_range`.
///
/// On compare failure, returns `Ok(false)` and updates `current`.
///
/// This is only called if `mapping()` returns `None` or if `page_fault()`
/// returns `PageFaultAction::Fallback`.
fn compare_exchange_fallback(
&self,
addr: u64,
current: &mut [u8],
new: &[u8],
) -> Result<bool, GuestMemoryBackingError> {
let _ = (current, new);
Err(GuestMemoryBackingError::new(addr, NoFallback))
}
/// Prepares a guest page for having its virtual address exposed as part of
/// a lock call.
///
/// This is useful to ensure that the address is mapped in a way that it can
/// be passed to the kernel for DMA.
fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
let _ = (address, len);
Ok(())
}
/// Returns the base IO virtual address for the mapping.
///
/// This is the base address that should be used for DMA from a user-mode
/// device driver whose device is not otherwise configured to go through an
/// IOMMU.
fn base_iova(&self) -> Option<u64> {
None
}
}
/// The action to take after [`GuestMemoryAccess::page_fault`] returns to
/// continue the operation.
pub enum PageFaultAction {
/// Fail the operation.
Fail(Box<dyn std::error::Error + Send + Sync>),
/// Retry the operation.
Retry,
/// Use the fallback method to access the memory.
Fallback,
}
/// Returned by [`GuestMemoryAccess::access_bitmap`].
pub struct BitmapInfo {
/// A pointer to the bitmap for read access.
pub read_bitmap: NonNull<u8>,
/// A pointer to the bitmap for write access.
pub write_bitmap: NonNull<u8>,
/// A pointer to the bitmap for execute access.
pub execute_bitmap: NonNull<u8>,
/// The bit offset of the beginning of the bitmap.
///
/// Typically this is zero, but it is needed to support subranges that are
/// not 8-page multiples.
pub bit_offset: u8,
}
// SAFETY: passing through guarantees from `T`.
unsafe impl<T: GuestMemoryAccess> GuestMemoryAccess for Arc<T> {
fn mapping(&self) -> Option<NonNull<u8>> {
self.as_ref().mapping()
}
fn max_address(&self) -> u64 {
self.as_ref().max_address()
}
fn access_bitmap(&self) -> Option<BitmapInfo> {
self.as_ref().access_bitmap()
}
fn subrange(
&self,
offset: u64,
len: u64,
allow_preemptive_locking: bool,
) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
self.as_ref()
.subrange(offset, len, allow_preemptive_locking)
}
fn page_fault(
&self,
addr: u64,
len: usize,
write: bool,
bitmap_failure: bool,
) -> PageFaultAction {
self.as_ref().page_fault(addr, len, write, bitmap_failure)
}
unsafe fn read_fallback(
&self,
addr: u64,
dest: *mut u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
// SAFETY: passing through guarantees from caller.
unsafe { self.as_ref().read_fallback(addr, dest, len) }
}
unsafe fn write_fallback(
&self,
addr: u64,
src: *const u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
// SAFETY: passing through guarantees from caller.
unsafe { self.as_ref().write_fallback(addr, src, len) }
}
fn fill_fallback(&self, addr: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
self.as_ref().fill_fallback(addr, val, len)
}
fn compare_exchange_fallback(
&self,
addr: u64,
current: &mut [u8],
new: &[u8],
) -> Result<bool, GuestMemoryBackingError> {
self.as_ref().compare_exchange_fallback(addr, current, new)
}
fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
self.as_ref().expose_va(address, len)
}
fn base_iova(&self) -> Option<u64> {
self.as_ref().base_iova()
}
}
// SAFETY: the allocation will stay valid for the lifetime of the object.
unsafe impl GuestMemoryAccess for sparse_mmap::SparseMapping {
fn mapping(&self) -> Option<NonNull<u8>> {
NonNull::new(self.as_ptr().cast())
}
fn max_address(&self) -> u64 {
self.len() as u64
}
}
/// Default guest memory range type, enforcing access boundaries.
struct GuestMemoryAccessRange {
base: Arc<GuestMemoryInner>,
offset: u64,
len: u64,
region: usize,
}
impl GuestMemoryAccessRange {
fn adjust_range(&self, address: u64, len: u64) -> Result<u64, GuestMemoryBackingError> {
if address <= self.len && len <= self.len - address {
Ok(self.offset + address)
} else {
Err(GuestMemoryBackingError::new(address, OutOfRange))
}
}
}
// SAFETY: `mapping()` is guaranteed to be valid for the lifetime of the object.
unsafe impl GuestMemoryAccess for GuestMemoryAccessRange {
fn mapping(&self) -> Option<NonNull<u8>> {
let region = &self.base.regions[self.region];
region.mapping.and_then(|mapping| {
let offset = self.offset & self.base.region_def.region_mask;
// This is guaranteed by construction.
assert!(region.len >= offset + self.len);
// SAFETY: this mapping is guaranteed to be within range by
// construction (and validated again via the assertion above).
NonNull::new(unsafe { mapping.0.as_ptr().add(offset as usize) })
})
}
fn max_address(&self) -> u64 {
self.len
}
fn access_bitmap(&self) -> Option<BitmapInfo> {
let region = &self.base.regions[self.region];
region.bitmaps.map(|bitmaps| {
let offset = self.offset & self.base.region_def.region_mask;
let bit_offset = region.bitmap_start as u64 + offset / PAGE_SIZE64;
let [read_bitmap, write_bitmap, execute_bitmap] = bitmaps.map(|SendPtrU8(ptr)| {
// SAFETY: the bitmap is guaranteed to be big enough for the region
// by construction.
NonNull::new(unsafe { ptr.as_ptr().add((bit_offset / 8) as usize) }).unwrap()
});
let bitmap_start = (bit_offset % 8) as u8;
BitmapInfo {
read_bitmap,
write_bitmap,
execute_bitmap,
bit_offset: bitmap_start,
}
})
}
fn subrange(
&self,
offset: u64,
len: u64,
_allow_preemptive_locking: bool,
) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
let address = self.adjust_range(offset, len)?;
Ok(Some(GuestMemory::new(
self.base.debug_name.clone(),
GuestMemoryAccessRange {
base: self.base.clone(),
offset: address,
len,
region: self.region,
},
)))
}
fn page_fault(
&self,
address: u64,
len: usize,
write: bool,
bitmap_failure: bool,
) -> PageFaultAction {
let address = self
.adjust_range(address, len as u64)
.expect("the caller should have validated the range was in the mapping");
self.base
.imp
.page_fault(address, len, write, bitmap_failure)
}
unsafe fn write_fallback(
&self,
address: u64,
src: *const u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
let address = self.adjust_range(address, len as u64)?;
// SAFETY: guaranteed by caller.
unsafe { self.base.imp.write_fallback(address, src, len) }
}
fn fill_fallback(
&self,
address: u64,
val: u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
let address = self.adjust_range(address, len as u64)?;
self.base.imp.fill_fallback(address, val, len)
}
fn compare_exchange_fallback(
&self,
addr: u64,
current: &mut [u8],
new: &[u8],
) -> Result<bool, GuestMemoryBackingError> {
let address = self.adjust_range(addr, new.len() as u64)?;
self.base
.imp
.compare_exchange_fallback(address, current, new)
}
unsafe fn read_fallback(
&self,
address: u64,
dest: *mut u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
let address = self.adjust_range(address, len as u64)?;
// SAFETY: guaranteed by caller.
unsafe { self.base.imp.read_fallback(address, dest, len) }
}
fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
let address = self.adjust_range(address, len)?;
self.base.imp.expose_va(address, len)
}
fn base_iova(&self) -> Option<u64> {
let region = &self.base.regions[self.region];
Some(region.base_iova? + (self.offset & self.base.region_def.region_mask))
}
}
/// Create a default guest memory subrange that verifies range limits and calls
/// back into the base implementation.
fn create_memory_subrange(
base: Arc<GuestMemoryInner>,
offset: u64,
len: u64,
_allow_preemptive_locking: bool,
) -> Result<GuestMemory, GuestMemoryBackingError> {
let (_, _, region) = base.region(offset, len)?;
Ok(GuestMemory::new(
base.debug_name.clone(),
GuestMemoryAccessRange {
base,
offset,
len,
region,
},
))
}
struct MultiRegionGuestMemoryAccess<T> {
imps: Vec<Option<T>>,
region_def: RegionDefinition,
}
impl<T> MultiRegionGuestMemoryAccess<T> {
fn region(&self, gpa: u64, len: u64) -> Result<(&T, u64), GuestMemoryBackingError> {
let (i, offset) = self.region_def.region(gpa, len)?;
let imp = self.imps[i]
.as_ref()
.ok_or(GuestMemoryBackingError::new(gpa, OutOfRange))?;
Ok((imp, offset))
}
}
// SAFETY: `mapping()` is unreachable and panics if called.
unsafe impl<T: GuestMemoryAccess> GuestMemoryAccess for MultiRegionGuestMemoryAccess<T> {
fn mapping(&self) -> Option<NonNull<u8>> {
unreachable!()
}
fn max_address(&self) -> u64 {
unreachable!()
}
fn access_bitmap(&self) -> Option<BitmapInfo> {
unreachable!()
}
fn subrange(
&self,
offset: u64,
len: u64,
allow_preemptive_locking: bool,
) -> Result<Option<GuestMemory>, GuestMemoryBackingError> {
let (region, offset_in_region) = self.region(offset, len)?;
region.subrange(offset_in_region, len, allow_preemptive_locking)
}
unsafe fn read_fallback(
&self,
addr: u64,
dest: *mut u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
let (region, offset_in_region) = self.region(addr, len as u64)?;
// SAFETY: guaranteed by caller.
unsafe { region.read_fallback(offset_in_region, dest, len) }
}
unsafe fn write_fallback(
&self,
addr: u64,
src: *const u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
let (region, offset_in_region) = self.region(addr, len as u64)?;
// SAFETY: guaranteed by caller.
unsafe { region.write_fallback(offset_in_region, src, len) }
}
fn fill_fallback(&self, addr: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
let (region, offset_in_region) = self.region(addr, len as u64)?;
region.fill_fallback(offset_in_region, val, len)
}
fn compare_exchange_fallback(
&self,
addr: u64,
current: &mut [u8],
new: &[u8],
) -> Result<bool, GuestMemoryBackingError> {
let (region, offset_in_region) = self.region(addr, new.len() as u64)?;
region.compare_exchange_fallback(offset_in_region, current, new)
}
fn expose_va(&self, address: u64, len: u64) -> Result<(), GuestMemoryBackingError> {
let (region, offset_in_region) = self.region(address, len)?;
region.expose_va(offset_in_region, len)
}
fn base_iova(&self) -> Option<u64> {
unreachable!()
}
}
/// A wrapper around a `GuestMemoryAccess` that provides methods for safely
/// reading and writing guest memory.
// NOTE: this type uses `inspect(skip)`, as it end up being a dependency of
// _many_ objects, and littering the inspect graph with references to the same
// node would be silly.
#[derive(Debug, Clone, Inspect)]
#[inspect(skip)]
pub struct GuestMemory {
inner: Arc<GuestMemoryInner>,
}
struct GuestMemoryInner<T: ?Sized = dyn GuestMemoryAccess> {
region_def: RegionDefinition,
regions: Vec<MemoryRegion>,
debug_name: Arc<str>,
allocated: bool,
imp: T,
}
impl<T: ?Sized> Debug for GuestMemoryInner<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("GuestMemoryInner")
.field("region_def", &self.region_def)
.field("regions", &self.regions)
.finish()
}
}
#[derive(Debug, Copy, Clone, Default)]
struct MemoryRegion {
mapping: Option<SendPtrU8>,
bitmaps: Option<[SendPtrU8; 3]>,
bitmap_start: u8,
len: u64,
base_iova: Option<u64>,
}
/// The access type. The values correspond to bitmap indexes.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum AccessType {
Read = 0,
Write = 1,
// FUTURE: add method to read for execute permission.
_Execute = 2,
}
/// `NonNull<u8>` that implements `Send+Sync`.
///
/// Rust makes pointers `!Send+!Sync` by default to force you to think about the
/// ownership model and thread safety of types using pointers--there is nothing
/// safety-related about `Send`/`Sync` on pointers by themselves since all such
/// accesses to pointers require `unsafe` blocks anyway.
///
/// However, in practice, this leads to spurious manual `Send+Sync` impls on
/// types containing pointers, especially those containing generics. Define a
/// wrapping pointer type that implements `Send+Sync` so that the normal auto
/// trait rules apply to types containing these pointers.
#[derive(Debug, Copy, Clone)]
struct SendPtrU8(NonNull<u8>);
// SAFETY: see type description.
unsafe impl Send for SendPtrU8 {}
// SAFETY: see type description.
unsafe impl Sync for SendPtrU8 {}
impl MemoryRegion {
fn new(imp: &impl GuestMemoryAccess) -> Self {
let bitmap_info = imp.access_bitmap();
let bitmaps = bitmap_info.as_ref().map(|bm| {
[
SendPtrU8(bm.read_bitmap),
SendPtrU8(bm.write_bitmap),
SendPtrU8(bm.execute_bitmap),
]
});
let bitmap_start = bitmap_info.map_or(0, |bi| bi.bit_offset);
Self {
mapping: imp.mapping().map(SendPtrU8),
bitmaps,
bitmap_start,
len: imp.max_address(),
base_iova: imp.base_iova(),
}
}
// # Safety
//
// The caller must ensure that `offset + len` fits in this region, and that
// the object bitmap is currently valid for atomic read access from this
// thread.
unsafe fn check_access(
&self,
access_type: AccessType,
offset: u64,
len: u64,
) -> Result<(), u64> {
debug_assert!(self.len >= offset + len);
if let Some(bitmaps) = &self.bitmaps {
let SendPtrU8(bitmap) = bitmaps[access_type as usize];
let start = offset / PAGE_SIZE64;
let end = (offset + len - 1) / PAGE_SIZE64;
// FUTURE: consider optimizing this separately for multi-page and
// single-page accesses.
for gpn in start..=end {
let bit_offset = self.bitmap_start as u64 + gpn;
// SAFETY: the caller ensures that the bitmap is big enough and
// valid for atomic read access from this thread.
let bit = unsafe {
(*bitmap
.as_ptr()
.cast_const()
.cast::<AtomicU8>()
.add(bit_offset as usize / 8))
.load(Ordering::Relaxed)
& (1 << (bit_offset % 8))
};
if bit == 0 {
return Err((gpn * PAGE_SIZE64).saturating_sub(offset));
}
}
}
Ok(())
}
}
/// The default implementation is [`GuestMemory::empty`].
impl Default for GuestMemory {
fn default() -> Self {
Self::empty()
}
}
struct Empty;
// SAFETY: the mapping is empty, so all requirements are trivially satisfied.
unsafe impl GuestMemoryAccess for Empty {
fn mapping(&self) -> Option<NonNull<u8>> {
None
}
fn max_address(&self) -> u64 {
0
}
}
#[derive(Debug, Error)]
pub enum MultiRegionError {
#[error("region size {0:#x} is not a power of 2")]
NotPowerOfTwo(u64),
#[error("region size {0:#x} is smaller than a page")]
RegionSizeTooSmall(u64),
#[error("too many regions ({region_count}) for region size {region_size:#x}; max is {max_region_count}")]
TooManyRegions {
region_count: usize,
max_region_count: usize,
region_size: u64,
},
#[error("backing size {backing_size:#x} is too large for region size {region_size:#x}")]
BackingTooLarge { backing_size: u64, region_size: u64 },
}
impl GuestMemory {
/// Returns a new instance using `imp` as the backing.
///
/// `debug_name` is used to specify which guest memory is being accessed in
/// error messages.
pub fn new(debug_name: impl Into<Arc<str>>, imp: impl GuestMemoryAccess) -> Self {
// Install signal handlers on unix if a mapping is present.
//
// Skip this on miri even when there is a mapping, since the mapping may
// never be accessed by the code under test.
if imp.mapping().is_some() && !cfg!(miri) {
sparse_mmap::initialize_try_copy();
}
Self::new_inner(debug_name.into(), imp, false)
}
fn new_inner(debug_name: Arc<str>, imp: impl GuestMemoryAccess, allocated: bool) -> Self {
let regions = vec![MemoryRegion::new(&imp)];
Self {
inner: Arc::new(GuestMemoryInner {
imp,
debug_name,
region_def: RegionDefinition {
invalid_mask: 1 << 63,
region_mask: !0 >> 1,
region_bits: 63, // right shift of 64 isn't valid, so restrict the space
},
regions,
allocated,
}),
}
}
/// Creates a new multi-region guest memory, made up of multiple mappings.
/// This allows you to create a very large sparse layout (up to the limits
/// of the VM's physical address space) without having to allocate an
/// enormous amount of virtual address space.
///
/// Each region will be `region_size` bytes and will start immediately after
/// the last one. This must be a power of two, be at least a page in size,
/// and cannot fill the full 64-bit address space.
///
/// `imps` must be a list of [`GuestMemoryAccess`] implementations, one for
/// each region. Use `None` if the corresponding region is empty.
///
/// A region's mapping cannot fully fill the region. This is necessary to
/// avoid callers expecting to be able to access a memory range that spans
/// two regions.
pub fn new_multi_region(
debug_name: impl Into<Arc<str>>,
region_size: u64,
mut imps: Vec<Option<impl GuestMemoryAccess>>,
) -> Result<Self, MultiRegionError> {
// Install signal handlers on unix.
sparse_mmap::initialize_try_copy();
if !region_size.is_power_of_two() {
return Err(MultiRegionError::NotPowerOfTwo(region_size));
}
if region_size < PAGE_SIZE64 {
return Err(MultiRegionError::RegionSizeTooSmall(region_size));
}
let region_bits = region_size.trailing_zeros();
let max_region_count = 1 << (63 - region_bits);
let region_count = imps.len().next_power_of_two();
if region_count > max_region_count {
return Err(MultiRegionError::TooManyRegions {
region_count,
max_region_count,
region_size,
});
}
let valid_bits = region_bits + region_count.trailing_zeros();
assert!(valid_bits < 64);
let invalid_mask = !0 << valid_bits;
let mut regions = vec![MemoryRegion::default(); region_count];
for (imp, region) in imps.iter().zip(&mut regions) {
let Some(imp) = imp else { continue };
let backing_size = imp.max_address();
if backing_size > region_size {
return Err(MultiRegionError::BackingTooLarge {
backing_size,
region_size,
});
}
*region = MemoryRegion::new(imp);
}
let region_def = RegionDefinition {
invalid_mask,
region_mask: region_size - 1,
region_bits,
};
imps.resize_with(region_count, || None);
let imp = MultiRegionGuestMemoryAccess { imps, region_def };
let inner = GuestMemoryInner {
debug_name: debug_name.into(),
region_def,
regions,
imp,
allocated: false,
};
Ok(Self {
inner: Arc::new(inner),
})
}
/// Allocates a guest memory object on the heap with the given size in
/// bytes.
///
/// `size` will be rounded up to the page size. The backing buffer will be
/// page aligned.
///
/// The debug name in errors will be "heap". If you want to provide a
/// different debug name, manually use `GuestMemory::new` with
/// [`AlignedHeapMemory`].
pub fn allocate(size: usize) -> Self {
Self::new_inner("heap".into(), AlignedHeapMemory::new(size), true)
}
/// If this memory is unaliased and was created via
/// [`GuestMemory::allocate`], returns the backing buffer.
///
/// Returns `Err(self)` if there are other references to this memory (via
/// `clone()`).
pub fn into_inner_buf(self) -> Result<AlignedHeapMemory, Self> {
if !self.inner.allocated {
return Err(self);
}
// FUTURE: consider using `Any` and `Arc::downcast` once trait upcasting is stable.
// SAFETY: the inner implementation is guaranteed to be a `AlignedHeapMemory`.
let inner = unsafe {
Arc::<GuestMemoryInner<AlignedHeapMemory>>::from_raw(Arc::into_raw(self.inner).cast())
};
let inner = Arc::try_unwrap(inner).map_err(|inner| Self { inner })?;
Ok(inner.imp)
}
/// If this memory was created via [`GuestMemory::allocate`], returns a slice to
/// the allocated buffer.
pub fn inner_buf(&self) -> Option<&[AtomicU8]> {
if !self.inner.allocated {
return None;
}
// FUTURE: consider using `<dyn Any>::downcast` once trait upcasting is stable.
// SAFETY: the inner implementation is guaranteed to be a `AlignedHeapMemory`.
let inner = unsafe { &*core::ptr::from_ref(&self.inner.imp).cast::<AlignedHeapMemory>() };
Some(inner)
}
/// If this memory was created via [`GuestMemory::allocate`] and there are
/// no other references to it, returns a mutable slice to the backing
/// buffer.
pub fn inner_buf_mut(&mut self) -> Option<&mut [u8]> {
if !self.inner.allocated {
return None;
}
let inner = Arc::get_mut(&mut self.inner)?;
// FUTURE: consider using `<dyn Any>::downcast` once trait upcasting is stable.
// SAFETY: the inner implementation is guaranteed to be a `AlignedHeapMemory`.
let imp = unsafe { &mut *core::ptr::from_mut(&mut inner.imp).cast::<AlignedHeapMemory>() };
Some(imp.as_mut())
}
/// Returns an empty guest memory, which fails every operation.
pub fn empty() -> Self {
GuestMemory::new("empty", Empty)
}
fn wrap_err(
&self,
gpa_len: Option<(u64, u64)>,
op: GuestMemoryOperation,
err: GuestMemoryBackingError,
) -> GuestMemoryError {
let range = gpa_len.map(|(gpa, len)| (gpa..gpa.wrapping_add(len)));
GuestMemoryError::new(&self.inner.debug_name, range, op, err)
}
fn with_op<T>(
&self,
gpa_len: Option<(u64, u64)>,
op: GuestMemoryOperation,
f: impl FnOnce() -> Result<T, GuestMemoryBackingError>,
) -> Result<T, GuestMemoryError> {
f().map_err(|err| self.wrap_err(gpa_len, op, err))
}
// Creates a smaller view into guest memory, constraining accesses within the new boundaries. For smaller ranges,
// some memory implementations (e.g. HDV) may choose to lock the pages into memory for faster access. Locking
// random guest memory may cause issues, so only opt in to this behavior when the range can be considered "owned"
// by the caller.
pub fn subrange(
&self,
offset: u64,
len: u64,
allow_preemptive_locking: bool,
) -> Result<GuestMemory, GuestMemoryError> {
self.with_op(Some((offset, len)), GuestMemoryOperation::Subrange, || {
if let Some(guest_memory) =
self.inner
.imp
.subrange(offset, len, allow_preemptive_locking)?
{
Ok(guest_memory)
} else {
create_memory_subrange(self.inner.clone(), offset, len, allow_preemptive_locking)
}
})
}
/// Returns the mapping for all of guest memory.
///
/// Returns `None` if there is more than one region or if the memory is not
/// mapped.
pub fn full_mapping(&self) -> Option<(*mut u8, usize)> {
if let [region] = self.inner.regions.as_slice() {
if region.bitmaps.is_some() {
return None;
}
region
.mapping
.map(|SendPtrU8(ptr)| (ptr.as_ptr(), region.len as usize))
} else {
None
}
}
/// Gets the IO address for DMAing to `gpa` from a user-mode driver not
/// going through an IOMMU.
pub fn iova(&self, gpa: u64) -> Option<u64> {
let (region, offset, _) = self.inner.region(gpa, 1).ok()?;
Some(region.base_iova? + offset)
}
/// Gets a pointer to the VA range for `gpa..gpa+len`.
///
/// Returns `Ok(None)` if there is no mapping. Returns `Err(_)` if the
/// memory is out of range.
fn mapping_range(
&self,
access_type: AccessType,
gpa: u64,
len: usize,
) -> Result<Option<*mut u8>, GuestMemoryBackingError> {
let (region, offset, _) = self.inner.region(gpa, len as u64)?;
if let Some(SendPtrU8(ptr)) = region.mapping {
loop {
// SAFETY: offset + len is checked by `region()` to be inside the VA range.
let fault_offset = unsafe {
match region.check_access(access_type, offset, len as u64) {
Ok(()) => return Ok(Some(ptr.as_ptr().add(offset as usize))),
Err(n) => n,
}
};
// Resolve the fault and try again.
match self.inner.imp.page_fault(
gpa + fault_offset,
len - fault_offset as usize,
access_type == AccessType::Write,
true,
) {
PageFaultAction::Fail(err) => {
return Err(GuestMemoryBackingError::new(gpa + fault_offset, err))
}
PageFaultAction::Retry => {}
PageFaultAction::Fallback => break,
}
}
}
Ok(None)
}
/// Runs `f` with a pointer to the mapped memory. If `f` fails, tries to
/// resolve the fault (failing on error), then loops.
///
/// If there is no mapping for the memory, or if the fault handler requests
/// it, call `fallback` instead. `fallback` will not be called unless `gpa`
/// and `len` are in range.
fn run_on_mapping<T, P>(
&self,
access_type: AccessType,
gpa: u64,
len: usize,
mut param: P,
mut f: impl FnMut(&mut P, *mut u8) -> Result<T, sparse_mmap::MemoryError>,
fallback: impl FnOnce(&mut P) -> Result<T, GuestMemoryBackingError>,
) -> Result<T, GuestMemoryBackingError> {
let Some(mapping) = self.mapping_range(access_type, gpa, len)? else {
return fallback(&mut param);
};
// Try until the fault fails to resolve.
loop {
match f(&mut param, mapping) {
Ok(t) => return Ok(t),
Err(fault) => {
match self.inner.imp.page_fault(
gpa + fault.offset() as u64,
len - fault.offset(),
access_type == AccessType::Write,
false,
) {
PageFaultAction::Fail(err) => {
return Err(GuestMemoryBackingError::new(
gpa + fault.offset() as u64,
err,
))
}
PageFaultAction::Retry => {}
PageFaultAction::Fallback => return fallback(&mut param),
}
}
}
}
}
unsafe fn write_ptr(
&self,
gpa: u64,
src: *const u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
if len == 0 {
return Ok(());
}
self.run_on_mapping(
AccessType::Write,
gpa,
len,
(),
|(), dest| {
// SAFETY: dest..dest+len is guaranteed to point to a reserved VA
// range, and src..src+len is guaranteed by the caller to be a valid
// buffer for reads.
unsafe { sparse_mmap::try_copy(src, dest, len) }
},
|()| {
// SAFETY: src..src+len is guaranteed by the caller to point to a valid
// buffer for reads.
unsafe { self.inner.imp.write_fallback(gpa, src, len) }
},
)
}
/// Writes `src` into guest memory at address `gpa`.
pub fn write_at(&self, gpa: u64, src: &[u8]) -> Result<(), GuestMemoryError> {
self.with_op(
Some((gpa, src.len() as u64)),
GuestMemoryOperation::Write,
|| self.write_at_inner(gpa, src),
)
}
fn write_at_inner(&self, gpa: u64, src: &[u8]) -> Result<(), GuestMemoryBackingError> {
// SAFETY: `src` is a valid buffer for reads.
unsafe { self.write_ptr(gpa, src.as_ptr(), src.len()) }
}
/// Writes `src` into guest memory at address `gpa`.
pub fn write_from_atomic(&self, gpa: u64, src: &[AtomicU8]) -> Result<(), GuestMemoryError> {
self.with_op(
Some((gpa, src.len() as u64)),
GuestMemoryOperation::Write,
|| {
// SAFETY: `src` is a valid buffer for reads.
unsafe { self.write_ptr(gpa, src.as_ptr().cast(), src.len()) }
},
)
}
/// Writes `len` bytes of `val` into guest memory at address `gpa`.
pub fn fill_at(&self, gpa: u64, val: u8, len: usize) -> Result<(), GuestMemoryError> {
self.with_op(Some((gpa, len as u64)), GuestMemoryOperation::Fill, || {
self.fill_at_inner(gpa, val, len)
})
}
fn fill_at_inner(&self, gpa: u64, val: u8, len: usize) -> Result<(), GuestMemoryBackingError> {
if len == 0 {
return Ok(());
}
self.run_on_mapping(
AccessType::Write,
gpa,
len,
(),
|(), dest| {
// SAFETY: dest..dest+len is guaranteed to point to a reserved VA range.
unsafe { sparse_mmap::try_write_bytes(dest, val, len) }
},
|()| self.inner.imp.fill_fallback(gpa, val, len),
)
}
/// Reads from guest memory into `dest..dest+len`.
///
/// # Safety
/// The caller must ensure dest..dest+len is a valid buffer for writes.
unsafe fn read_ptr(
&self,
gpa: u64,
dest: *mut u8,
len: usize,
) -> Result<(), GuestMemoryBackingError> {
if len == 0 {
return Ok(());
}
self.run_on_mapping(
AccessType::Read,
gpa,
len,
(),
|(), src| {
// SAFETY: src..src+len is guaranteed to point to a reserved VA
// range, and dest..dest+len is guaranteed by the caller to be a
// valid buffer for writes.
unsafe { sparse_mmap::try_copy(src, dest, len) }
},
|()| {
// SAFETY: dest..dest+len is guaranteed by the caller to point to a
// valid buffer for writes.
unsafe { self.inner.imp.read_fallback(gpa, dest, len) }
},
)
}
fn read_at_inner(&self, gpa: u64, dest: &mut [u8]) -> Result<(), GuestMemoryBackingError> {
// SAFETY: `dest` is a valid buffer for writes.
unsafe { self.read_ptr(gpa, dest.as_mut_ptr(), dest.len()) }
}
/// Reads from guest memory address `gpa` into `dest`.
pub fn read_at(&self, gpa: u64, dest: &mut [u8]) -> Result<(), GuestMemoryError> {
self.with_op(
Some((gpa, dest.len() as u64)),
GuestMemoryOperation::Read,
|| self.read_at_inner(gpa, dest),
)
}
/// Reads from guest memory address `gpa` into `dest`.
pub fn read_to_atomic(&self, gpa: u64, dest: &[AtomicU8]) -> Result<(), GuestMemoryError> {
self.with_op(
Some((gpa, dest.len() as u64)),
GuestMemoryOperation::Read,
// SAFETY: `dest` is a valid buffer for writes.
|| unsafe { self.read_ptr(gpa, dest.as_ptr() as *mut u8, dest.len()) },
)
}
/// Writes an object to guest memory at address `gpa`.
///
/// If the object is 1, 2, 4, or 8 bytes and the address is naturally
/// aligned, then the write will be performed atomically. Here, this means
/// that concurrent readers (via `read_plain`) cannot observe a torn write
/// but will observe either the old or new value.
///
/// The memory ordering of the write is unspecified.
///
/// FUTURE: once we are on Rust 1.79, add a method specifically for atomic
/// accesses that const asserts that the size is appropriate.
pub fn write_plain<T: AsBytes>(&self, gpa: u64, b: &T) -> Result<(), GuestMemoryError> {
// Note that this is const, so the match below will compile out.
let len = size_of::<T>();
self.with_op(Some((gpa, len as u64)), GuestMemoryOperation::Write, || {
self.run_on_mapping(
AccessType::Write,
gpa,
len,
(),
|(), dest| {
match len {
1 | 2 | 4 | 8 => {
// SAFETY: dest..dest+len is guaranteed to point to
// a reserved VA range.
unsafe { sparse_mmap::try_write_volatile(dest.cast(), b) }
}
_ => {
// SAFETY: dest..dest+len is guaranteed to point to
// a reserved VA range.
unsafe { sparse_mmap::try_copy(b.as_bytes().as_ptr(), dest, len) }
}
}
},
|()| {
// SAFETY: b is a valid buffer for reads.
unsafe {
self.inner
.imp
.write_fallback(gpa, b.as_bytes().as_ptr(), len)
}
},
)
})
}
/// Attempts a sequentially-consistent compare exchange of the value at `gpa`.
pub fn compare_exchange<T: AsBytes + FromBytes + Copy>(
&self,
gpa: u64,
current: T,
new: T,
) -> Result<Result<T, T>, GuestMemoryError> {
let len = size_of_val(&new);
self.with_op(
Some((gpa, len as u64)),
GuestMemoryOperation::CompareExchange,
|| {
// Assume that if write is allowed, then read is allowed.
self.run_on_mapping(
AccessType::Write,
gpa,
len,
(),
|(), dest| {
// SAFETY: dest..dest+len is guaranteed by the caller to be a valid
// buffer for writes.
unsafe { sparse_mmap::try_compare_exchange(dest.cast(), current, new) }
},
|()| {
let mut current = current;
let success = self.inner.imp.compare_exchange_fallback(
gpa,
current.as_bytes_mut(),
new.as_bytes(),
)?;
Ok(if success { Ok(new) } else { Err(current) })
},
)
},
)
}
/// Attempts a sequentially-consistent compare exchange of the value at `gpa`.
pub fn compare_exchange_bytes<T: AsBytes + FromBytes + ?Sized>(
&self,
gpa: u64,
current: &mut T,
new: &T,
) -> Result<bool, GuestMemoryError> {
let len = size_of_val(new);
assert_eq!(size_of_val(current), len);
self.with_op(
Some((gpa, len as u64)),
GuestMemoryOperation::CompareExchange,
|| {
// Assume that if write is allowed, then read is allowed.
self.run_on_mapping(
AccessType::Write,
gpa,
len,
current,
|current, dest| {
// SAFETY: dest..dest+len is guaranteed by the caller to be a valid
// buffer for writes.
unsafe { sparse_mmap::try_compare_exchange_ref(dest, *current, new) }
},
|current| {
let success = self.inner.imp.compare_exchange_fallback(
gpa,
current.as_bytes_mut(),
new.as_bytes(),
)?;
Ok(success)
},
)
},
)
}
/// Reads an object from guest memory at address `gpa`.
///
/// If the object is 1, 2, 4, or 8 bytes and the address is naturally
/// aligned, then the read will be performed atomically. Here, this means
/// that when there is a concurrent writer, callers will observe either the
/// old or new value, but not a torn read.
///
/// The memory ordering of the read is unspecified.
///
/// FUTURE: once we are on Rust 1.79, add a method specifically for atomic
/// accesses that const asserts that the size is appropriate.
pub fn read_plain<T: FromBytes>(&self, gpa: u64) -> Result<T, GuestMemoryError> {
// Note that this is const, so the match below will compile out.
let len = size_of::<T>();
self.with_op(Some((gpa, len as u64)), GuestMemoryOperation::Read, || {
self.run_on_mapping(
AccessType::Read,
gpa,
len,
(),
|(), src| {
match len {
1 | 2 | 4 | 8 => {
// SAFETY: src..src+len is guaranteed to point to a reserved VA
// range.
unsafe { sparse_mmap::try_read_volatile(src.cast::<T>()) }
}
_ => {
let mut obj = std::mem::MaybeUninit::<T>::zeroed();
// SAFETY: src..src+len is guaranteed to point to a reserved VA
// range.
unsafe { sparse_mmap::try_copy(src, obj.as_mut_ptr().cast(), len)? };
// SAFETY: `obj` was fully initialized by `try_copy`.
Ok(unsafe { obj.assume_init() })
}
}
},
|()| {
let mut obj = std::mem::MaybeUninit::<T>::zeroed();
// SAFETY: dest..dest+len is guaranteed by the caller to point to a
// valid buffer for writes.
unsafe {
self.inner
.imp
.read_fallback(gpa, obj.as_mut_ptr().cast(), len)?;
}
// SAFETY: `obj` was fully initialized by `read_fallback`.
Ok(unsafe { obj.assume_init() })
},
)
})
}
fn probe_page_for_lock(
&self,
with_kernel_access: bool,
gpa: u64,
) -> Result<*const AtomicU8, GuestMemoryBackingError> {
let (region, offset, _) = self.inner.region(gpa, 1)?;
let Some(SendPtrU8(ptr)) = region.mapping else {
return Err(GuestMemoryBackingError::new(gpa, NotLockable));
};
// Ensure the virtual address can be exposed.
if with_kernel_access {
self.inner.imp.expose_va(gpa, 1)?;
}
let mut b = [0];
// FUTURE: check the correct bitmap for the access type, which needs to
// be passed in.
self.read_at_inner(gpa, &mut b)?;
// SAFETY: the read_at call includes a check that ensures that
// `gpa` is in the VA range.
let page = unsafe { ptr.as_ptr().add(offset as usize) };
Ok(page.cast())
}
pub fn lock_gpns(
&self,
with_kernel_access: bool,
gpns: &[u64],
) -> Result<LockedPages, GuestMemoryError> {
self.with_op(None, GuestMemoryOperation::Lock, || {
let mut pages = Vec::with_capacity(gpns.len());
for &gpn in gpns {
let gpa = gpn_to_gpa(gpn).map_err(GuestMemoryBackingError::gpn)?;
let page = self.probe_page_for_lock(with_kernel_access, gpa)?;
pages.push(PagePtr(page));
}
Ok(LockedPages {
pages: pages.into_boxed_slice(),
_mem: self.inner.clone(),
})
})
}
pub fn probe_gpns(&self, gpns: &[u64]) -> Result<(), GuestMemoryError> {
self.with_op(None, GuestMemoryOperation::Probe, || {
for &gpn in gpns {
let mut b = [0];
self.read_at_inner(
gpn_to_gpa(gpn).map_err(GuestMemoryBackingError::gpn)?,
&mut b,
)?;
}
Ok(())
})
}
/// Check if a given GPA is readable or not.
pub fn check_gpa_readable(&self, gpa: u64) -> bool {
let mut b = [0];
self.read_at_inner(gpa, &mut b).is_ok()
}
/// Gets a slice of guest memory assuming the memory was already locked via
/// [`GuestMemory::lock_gpns`].
///
/// This is dangerous--if the pages have not been locked, then it could
/// cause an access violation or guest memory corruption.
///
/// Note that this is not `unsafe` since this cannot cause memory corruption
/// in this process. Even if there is an access violation, the underlying VA
/// space is known to be reserved.
///
/// Panics if the requested buffer is out of range.
fn dangerous_access_pre_locked_memory(&self, gpa: u64, len: usize) -> &[AtomicU8] {
let addr = self
.mapping_range(AccessType::Write, gpa, len)
.unwrap()
.unwrap();
// SAFETY: addr..addr+len is checked above to be a valid VA range. It's
// possible some of the pages aren't mapped and will cause AVs at
// runtime when accessed, but, as discussed above, at a language level
// this cannot cause any safety issues.
unsafe { std::slice::from_raw_parts(addr.cast(), len) }
}
fn op_range<F: FnMut(u64, Range<usize>) -> Result<(), GuestMemoryBackingError>>(
&self,
op: GuestMemoryOperation,
range: &PagedRange<'_>,
mut f: F,
) -> Result<(), GuestMemoryError> {
self.with_op(None, op, || {
let gpns = range.gpns();
let offset = range.offset();
// Perform the operation in three phases: the first page (if it is not a
// full page), the full pages, and the last page (if it is not a full
// page).
let mut byte_index = 0;
let mut len = range.len();
let mut page = 0;
if offset % PAGE_SIZE != 0 {
let head_len = std::cmp::min(len, PAGE_SIZE - (offset % PAGE_SIZE));
let addr = gpn_to_gpa(gpns[page]).map_err(GuestMemoryBackingError::gpn)?
+ offset as u64 % PAGE_SIZE64;
f(addr, byte_index..byte_index + head_len)?;
byte_index += head_len;
len -= head_len;
page += 1;
}
while len >= PAGE_SIZE {
f(
gpn_to_gpa(gpns[page]).map_err(GuestMemoryBackingError::gpn)?,
byte_index..byte_index + PAGE_SIZE,
)?;
byte_index += PAGE_SIZE;
len -= PAGE_SIZE;
page += 1;
}
if len > 0 {
f(
gpn_to_gpa(gpns[page]).map_err(GuestMemoryBackingError::gpn)?,
byte_index..byte_index + len,
)?;
}
Ok(())
})
}
pub fn write_range(&self, range: &PagedRange<'_>, data: &[u8]) -> Result<(), GuestMemoryError> {
assert!(data.len() == range.len());
self.op_range(GuestMemoryOperation::Write, range, move |addr, r| {
self.write_at_inner(addr, &data[r])
})
}
pub fn fill_range(&self, range: &PagedRange<'_>, val: u8) -> Result<(), GuestMemoryError> {
self.op_range(GuestMemoryOperation::Fill, range, move |addr, r| {
self.fill_at_inner(addr, val, r.len())
})
}
pub fn zero_range(&self, range: &PagedRange<'_>) -> Result<(), GuestMemoryError> {
self.op_range(GuestMemoryOperation::Fill, range, move |addr, r| {
self.fill_at_inner(addr, 0, r.len())
})
}
pub fn read_range(
&self,
range: &PagedRange<'_>,
data: &mut [u8],
) -> Result<(), GuestMemoryError> {
assert!(data.len() == range.len());
self.op_range(GuestMemoryOperation::Read, range, move |addr, r| {
self.read_at_inner(addr, &mut data[r])
})
}
pub fn write_range_from_atomic(
&self,
range: &PagedRange<'_>,
data: &[AtomicU8],
) -> Result<(), GuestMemoryError> {
assert!(data.len() == range.len());
self.op_range(GuestMemoryOperation::Write, range, move |addr, r| {
let src = &data[r];
// SAFETY: `src` is a valid buffer for reads.
unsafe { self.write_ptr(addr, src.as_ptr().cast(), src.len()) }
})
}
pub fn read_range_to_atomic(
&self,
range: &PagedRange<'_>,
data: &[AtomicU8],
) -> Result<(), GuestMemoryError> {
assert!(data.len() == range.len());
self.op_range(GuestMemoryOperation::Read, range, move |addr, r| {
let dest = &data[r];
// SAFETY: `dest` is a valid buffer for writes.
unsafe { self.read_ptr(addr, dest.as_ptr().cast_mut().cast(), dest.len()) }
})
}
/// Locks the guest pages spanned by the specified `PagedRange` for the `'static` lifetime.
///
/// # Arguments
/// * 'paged_range' - The guest memory range to lock.
/// * 'locked_range' - Receives a list of VA ranges to which each contiguous physical sub-range in `paged_range`
/// has been mapped. Must be initially empty.
pub fn lock_range<T: LockedRange>(
&self,
paged_range: PagedRange<'_>,
mut locked_range: T,
) -> Result<LockedRangeImpl<T>, GuestMemoryError> {
self.with_op(None, GuestMemoryOperation::Lock, || {
let gpns = paged_range.gpns();
for &gpn in gpns {
let gpa = gpn_to_gpa(gpn).map_err(GuestMemoryBackingError::gpn)?;
self.probe_page_for_lock(true, gpa)?;
}
for range in paged_range.ranges() {
let range = range.map_err(GuestMemoryBackingError::gpn)?;
locked_range.push_sub_range(
self.dangerous_access_pre_locked_memory(range.start, range.len() as usize),
);
}
Ok(LockedRangeImpl {
_mem: self.inner.clone(),
inner: locked_range,
})
})
}
}
#[derive(Debug, Error)]
#[error("invalid guest page number {0:#x}")]
pub struct InvalidGpn(u64);
fn gpn_to_gpa(gpn: u64) -> Result<u64, InvalidGpn> {
gpn.checked_mul(PAGE_SIZE64).ok_or(InvalidGpn(gpn))
}
#[derive(Debug, Copy, Clone, Default)]
struct RegionDefinition {
invalid_mask: u64,
region_mask: u64,
region_bits: u32,
}
impl RegionDefinition {
fn region(&self, gpa: u64, len: u64) -> Result<(usize, u64), GuestMemoryBackingError> {
if (gpa | len) & self.invalid_mask != 0 {
return Err(GuestMemoryBackingError::new(gpa, OutOfRange));
}
let offset = gpa & self.region_mask;
if offset.wrapping_add(len) & !self.region_mask != 0 {
return Err(GuestMemoryBackingError::new(gpa, OutOfRange));
}
let index = (gpa >> self.region_bits) as usize;
Ok((index, offset))
}
}
impl GuestMemoryInner {
fn region(
&self,
gpa: u64,
len: u64,
) -> Result<(&MemoryRegion, u64, usize), GuestMemoryBackingError> {
let (index, offset) = self.region_def.region(gpa, len)?;
let region = &self.regions[index];
if offset + len > region.len {
return Err(GuestMemoryBackingError::new(gpa, OutOfRange));
}
Ok((&self.regions[index], offset, index))
}
}
#[derive(Clone)]
pub struct LockedPages {
pages: Box<[PagePtr]>,
// maintain a reference to the backing memory
_mem: Arc<GuestMemoryInner>,
}
impl Debug for LockedPages {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("LockedPages")
.field("page_count", &self.pages.len())
.finish()
}
}
#[derive(Copy, Clone, Debug)]
// Field is read via slice transmute and pointer casts, not actually dead.
struct PagePtr(#[allow(dead_code)] *const AtomicU8);
// SAFETY: PagePtr is just a pointer with no methods and has no inherent safety
// constraints.
unsafe impl Send for PagePtr {}
// SAFETY: see above comment
unsafe impl Sync for PagePtr {}
pub type Page = [AtomicU8; PAGE_SIZE];
impl LockedPages {
#[inline]
pub fn pages(&self) -> &[&Page] {
// SAFETY: PagePtr is just a pointer to a Page. The pages are kept alive by
// the reference in _mem, and the lifetimes here ensure the LockedPages outlives
// the slice.
unsafe { std::slice::from_raw_parts(self.pages.as_ptr().cast::<&Page>(), self.pages.len()) }
}
}
impl<'a> AsRef<[&'a Page]> for &'a LockedPages {
fn as_ref(&self) -> &[&'a Page] {
self.pages()
}
}
/// Represents a range of locked guest pages as an ordered list of the VA sub-ranges
/// to which the guest pages are mapped.
/// The range may only partially span the first and last page and must fully span all
/// intermediate pages.
pub trait LockedRange {
/// Adds a sub-range to this range.
fn push_sub_range(&mut self, sub_range: &[AtomicU8]);
/// Removes and returns the last sub range.
fn pop_sub_range(&mut self) -> Option<(*const AtomicU8, usize)>;
}
pub struct LockedRangeImpl<T: LockedRange> {
_mem: Arc<GuestMemoryInner>,
inner: T,
}
impl<T: LockedRange> LockedRangeImpl<T> {
pub fn get(&self) -> &T {
&self.inner
}
}
impl<T: LockedRange> Drop for LockedRangeImpl<T> {
fn drop(&mut self) {
// FUTURE: Remove and unlock all sub ranges. This is currently
// not necessary yet as only fully mapped VMs are supported.
// while let Some(sub_range) = self.inner.pop_sub_range() {
// call self._mem to unlock the sub-range, individually or in batches
// }
}
}
#[derive(Debug, Error)]
pub enum AccessError {
#[error("memory access error")]
Memory(#[from] GuestMemoryError),
#[error("out of range: {0:#x} < {1:#x}")]
OutOfRange(usize, usize),
#[error("write attempted to read-only memory")]
ReadOnly,
}
pub trait MemoryRead {
fn read(&mut self, data: &mut [u8]) -> Result<&mut Self, AccessError>;
fn skip(&mut self, len: usize) -> Result<&mut Self, AccessError>;
fn len(&self) -> usize;
fn read_plain<T: AsBytes + FromBytes>(&mut self) -> Result<T, AccessError> {
let mut value: T = FromZeroes::new_zeroed();
self.read(value.as_bytes_mut())?;
Ok(value)
}
fn read_n<T: AsBytes + FromBytes + Copy>(&mut self, len: usize) -> Result<Vec<T>, AccessError> {
let mut value = vec![FromZeroes::new_zeroed(); len];
self.read(value.as_bytes_mut())?;
Ok(value)
}
fn read_all(&mut self) -> Result<Vec<u8>, AccessError> {
let mut value = vec![0; self.len()];
self.read(&mut value)?;
Ok(value)
}
fn limit(self, len: usize) -> Limit<Self>
where
Self: Sized,
{
let len = len.min(self.len());
Limit { inner: self, len }
}
}
pub trait MemoryWrite {
fn write(&mut self, data: &[u8]) -> Result<(), AccessError>;
fn zero(&mut self, len: usize) -> Result<(), AccessError> {
self.fill(0, len)
}
fn fill(&mut self, val: u8, len: usize) -> Result<(), AccessError>;
fn len(&self) -> usize;
fn limit(self, len: usize) -> Limit<Self>
where
Self: Sized,
{
let len = len.min(self.len());
Limit { inner: self, len }
}
}
impl MemoryRead for &'_ [u8] {
fn read(&mut self, data: &mut [u8]) -> Result<&mut Self, AccessError> {
if self.len() < data.len() {
return Err(AccessError::OutOfRange(self.len(), data.len()));
}
let (source, rest) = self.split_at(data.len());
data.copy_from_slice(source);
*self = rest;
Ok(self)
}
fn skip(&mut self, len: usize) -> Result<&mut Self, AccessError> {
if self.len() < len {
return Err(AccessError::OutOfRange(self.len(), len));
}
*self = &self[len..];
Ok(self)
}
fn len(&self) -> usize {
<[u8]>::len(self)
}
}
impl MemoryWrite for &mut [u8] {
fn write(&mut self, data: &[u8]) -> Result<(), AccessError> {
if self.len() < data.len() {
return Err(AccessError::OutOfRange(self.len(), data.len()));
}
let (dest, rest) = std::mem::take(self).split_at_mut(data.len());
dest.copy_from_slice(data);
*self = rest;
Ok(())
}
fn fill(&mut self, val: u8, len: usize) -> Result<(), AccessError> {
if self.len() < len {
return Err(AccessError::OutOfRange(self.len(), len));
}
let (dest, rest) = std::mem::take(self).split_at_mut(len);
dest.fill(val);
*self = rest;
Ok(())
}
fn len(&self) -> usize {
<[u8]>::len(self)
}
}
#[derive(Debug, Clone)]
pub struct Limit<T> {
inner: T,
len: usize,
}
impl<T: MemoryRead> MemoryRead for Limit<T> {
fn read(&mut self, data: &mut [u8]) -> Result<&mut Self, AccessError> {
let len = data.len();
if len > self.len {
return Err(AccessError::OutOfRange(self.len, len));
}
self.inner.read(data)?;
self.len -= len;
Ok(self)
}
fn skip(&mut self, len: usize) -> Result<&mut Self, AccessError> {
if len > self.len {
return Err(AccessError::OutOfRange(self.len, len));
}
self.inner.skip(len)?;
self.len -= len;
Ok(self)
}
fn len(&self) -> usize {
self.len
}
}
impl<T: MemoryWrite> MemoryWrite for Limit<T> {
fn write(&mut self, data: &[u8]) -> Result<(), AccessError> {
let len = data.len();
if len > self.len {
return Err(AccessError::OutOfRange(self.len, len));
}
self.inner.write(data)?;
self.len -= len;
Ok(())
}
fn fill(&mut self, val: u8, len: usize) -> Result<(), AccessError> {
if len > self.len {
return Err(AccessError::OutOfRange(self.len, len));
}
self.inner.fill(val, len)?;
self.len -= len;
Ok(())
}
fn len(&self) -> usize {
self.len
}
}
/// Trait implemented to allow mapping and unmapping a region of memory at
/// a particular guest address.
pub trait MappableGuestMemory: Send + Sync {
/// Maps the memory into the guest.
///
/// `writable` specifies whether the guest can write to the memory region.
/// If a guest tries to write to a non-writable region, the virtual
/// processor will exit for MMIO handling.
fn map_to_guest(&mut self, gpa: u64, writable: bool) -> io::Result<()>;
fn unmap_from_guest(&mut self);
}
/// Trait implemented for a region of memory that can have memory mapped into
/// it.
pub trait MappedMemoryRegion: Send + Sync {
/// Maps an object at `offset` in the region.
///
/// Behaves like mmap--overwrites and splits existing mappings.
fn map(
&self,
offset: usize,
section: &dyn AsMappableRef,
file_offset: u64,
len: usize,
writable: bool,
) -> io::Result<()>;
/// Unmaps any mappings in the specified range within the region.
fn unmap(&self, offset: usize, len: usize) -> io::Result<()>;
}
/// Trait implemented to allow the creation of memory regions.
pub trait MemoryMapper: Send + Sync {
/// Creates a new memory region that can later be mapped into the guest.
///
/// Returns both an interface for mapping/unmapping the region and for
/// adding internal mappings.
fn new_region(
&self,
len: usize,
debug_name: String,
) -> io::Result<(Box<dyn MappableGuestMemory>, Arc<dyn MappedMemoryRegion>)>;
}
/// Doorbell provides a mechanism to register for notifications on writes to specific addresses in guest memory.
pub trait DoorbellRegistration: Send + Sync {
/// Register a doorbell event.
fn register_doorbell(
&self,
guest_address: u64,
value: Option<u64>,
length: Option<u32>,
event: &Event,
) -> io::Result<Box<dyn Send + Sync>>;
}
/// Trait to map a ROM at one or more locations in guest memory.
pub trait MapRom: Send + Sync {
/// Maps the specified portion of the ROM into guest memory at `gpa`.
///
/// The returned object will implicitly unmap the ROM when dropped.
fn map_rom(&self, gpa: u64, offset: u64, len: u64) -> io::Result<Box<dyn UnmapRom>>;
/// Returns the length of the ROM in bytes.
fn len(&self) -> u64;
}
/// Trait to unmap a ROM from guest memory.
pub trait UnmapRom: Send + Sync {
/// Unmaps the ROM from guest memory.
fn unmap_rom(self);
}
#[cfg(test)]
#[allow(clippy::undocumented_unsafe_blocks)]
mod tests {
use crate::BitmapInfo;
use crate::GuestMemory;
use crate::PageFaultAction;
use crate::PAGE_SIZE64;
use sparse_mmap::SparseMapping;
use std::ptr::NonNull;
use std::sync::Arc;
use thiserror::Error;
/// An implementation of a GuestMemoryAccess trait that expects all of
/// guest memory to be mapped at a given base, with mmap or the Windows
/// equivalent. Pages that are not backed by RAM will return failure
/// when attempting to access them.
pub struct GuestMemoryMapping {
mapping: SparseMapping,
bitmap: Option<Vec<u8>>,
}
unsafe impl crate::GuestMemoryAccess for GuestMemoryMapping {
fn mapping(&self) -> Option<NonNull<u8>> {
NonNull::new(self.mapping.as_ptr().cast())
}
fn max_address(&self) -> u64 {
self.mapping.len() as u64
}
fn access_bitmap(&self) -> Option<BitmapInfo> {
self.bitmap.as_ref().map(|bm| BitmapInfo {
read_bitmap: NonNull::new(bm.as_ptr().cast_mut()).unwrap(),
write_bitmap: NonNull::new(bm.as_ptr().cast_mut()).unwrap(),
execute_bitmap: NonNull::new(bm.as_ptr().cast_mut()).unwrap(),
bit_offset: 0,
})
}
}
const PAGE_SIZE: usize = 4096;
const SIZE_1MB: usize = 1048576;
/// Create a test guest layout:
/// 0 -> 1MB RAM
/// 1MB -> 2MB empty
/// 2MB -> 3MB RAM
/// 3MB -> 3MB + 4K empty
/// 3MB + 4K -> 4MB RAM
fn create_test_mapping() -> GuestMemoryMapping {
let mapping = SparseMapping::new(SIZE_1MB * 4).unwrap();
mapping.alloc(0, SIZE_1MB).unwrap();
mapping.alloc(2 * SIZE_1MB, SIZE_1MB).unwrap();
mapping
.alloc(3 * SIZE_1MB + PAGE_SIZE, SIZE_1MB - PAGE_SIZE)
.unwrap();
GuestMemoryMapping {
mapping,
bitmap: None,
}
}
#[test]
fn test_basic_read_write() {
let mapping = create_test_mapping();
let gm = GuestMemory::new("test", mapping);
// Test reading at 0.
let addr = 0;
let result = gm.read_plain::<u8>(addr);
assert_eq!(result.unwrap(), 0);
// Test read/write to first page
let write_buffer = [1, 2, 3, 4, 5];
let mut read_buffer = [0; 5];
gm.write_at(0, &write_buffer).unwrap();
gm.read_at(0, &mut read_buffer).unwrap();
assert_eq!(write_buffer, read_buffer);
assert_eq!(gm.read_plain::<u8>(0).unwrap(), 1);
assert_eq!(gm.read_plain::<u8>(1).unwrap(), 2);
assert_eq!(gm.read_plain::<u8>(2).unwrap(), 3);
assert_eq!(gm.read_plain::<u8>(3).unwrap(), 4);
assert_eq!(gm.read_plain::<u8>(4).unwrap(), 5);
// Test read/write to page at 2MB
let addr = 2 * SIZE_1MB as u64;
let write_buffer: Vec<u8> = (0..PAGE_SIZE).map(|x| x as u8).collect();
let mut read_buffer: Vec<u8> = (0..PAGE_SIZE).map(|_| 0).collect();
gm.write_at(addr, write_buffer.as_slice()).unwrap();
gm.read_at(addr, read_buffer.as_mut_slice()).unwrap();
assert_eq!(write_buffer, read_buffer);
// Test read/write to first 1MB
let write_buffer: Vec<u8> = (0..SIZE_1MB).map(|x| x as u8).collect();
let mut read_buffer: Vec<u8> = (0..SIZE_1MB).map(|_| 0).collect();
gm.write_at(addr, write_buffer.as_slice()).unwrap();
gm.read_at(addr, read_buffer.as_mut_slice()).unwrap();
assert_eq!(write_buffer, read_buffer);
// Test bad read at 1MB
let addr = SIZE_1MB as u64;
let result = gm.read_plain::<u8>(addr);
assert!(result.is_err());
}
#[test]
fn test_multi() {
let len = SIZE_1MB * 4;
let mapping = SparseMapping::new(len).unwrap();
mapping.alloc(0, len).unwrap();
let mapping = Arc::new(GuestMemoryMapping {
mapping,
bitmap: None,
});
let region_len = 1 << 30;
let gm = GuestMemory::new_multi_region(
"test",
region_len,
vec![Some(mapping.clone()), None, Some(mapping.clone())],
)
.unwrap();
let mut b = [0];
let len = len as u64;
gm.read_at(0, &mut b).unwrap();
gm.read_at(len, &mut b).unwrap_err();
gm.read_at(region_len, &mut b).unwrap_err();
gm.read_at(2 * region_len, &mut b).unwrap();
gm.read_at(2 * region_len + len, &mut b).unwrap_err();
gm.read_at(3 * region_len, &mut b).unwrap_err();
}
#[test]
fn test_bitmap() {
let len = PAGE_SIZE * 4;
let mapping = SparseMapping::new(len).unwrap();
mapping.alloc(0, len).unwrap();
let bitmap = vec![0b0101];
let mapping = Arc::new(GuestMemoryMapping {
mapping,
bitmap: Some(bitmap),
});
let gm = GuestMemory::new("test", mapping);
gm.read_plain::<[u8; 1]>(0).unwrap();
gm.read_plain::<[u8; 1]>(PAGE_SIZE64 - 1).unwrap();
gm.read_plain::<[u8; 2]>(PAGE_SIZE64 - 1).unwrap_err();
gm.read_plain::<[u8; 1]>(PAGE_SIZE64).unwrap_err();
gm.read_plain::<[u8; 1]>(PAGE_SIZE64 * 2).unwrap();
gm.read_plain::<[u8; PAGE_SIZE * 2]>(0).unwrap_err();
}
struct FaultingMapping {
mapping: SparseMapping,
}
#[derive(Debug, Error)]
#[error("fault")]
struct Fault;
unsafe impl crate::GuestMemoryAccess for FaultingMapping {
fn mapping(&self) -> Option<NonNull<u8>> {
NonNull::new(self.mapping.as_ptr().cast())
}
fn max_address(&self) -> u64 {
self.mapping.len() as u64
}
fn page_fault(
&self,
address: u64,
_len: usize,
write: bool,
bitmap_failure: bool,
) -> PageFaultAction {
assert!(!bitmap_failure);
let qlen = self.mapping.len() as u64 / 4;
if address < qlen || address >= 3 * qlen {
return PageFaultAction::Fail(Fault.into());
}
let page_address = (address as usize) & !(PAGE_SIZE - 1);
if address >= 2 * qlen {
if write {
return PageFaultAction::Fail(Fault.into());
}
self.mapping.map_zero(page_address, PAGE_SIZE).unwrap();
} else {
self.mapping.alloc(page_address, PAGE_SIZE).unwrap();
}
PageFaultAction::Retry
}
}
impl FaultingMapping {
fn new(len: usize) -> Self {
let mapping = SparseMapping::new(len).unwrap();
FaultingMapping { mapping }
}
}
#[test]
fn test_fault() {
let len = PAGE_SIZE * 4;
let mapping = FaultingMapping::new(len);
let gm = GuestMemory::new("test", mapping);
gm.write_plain::<u8>(0, &0).unwrap_err();
gm.read_plain::<u8>(PAGE_SIZE64 - 1).unwrap_err();
gm.read_plain::<u8>(PAGE_SIZE64).unwrap();
gm.write_plain::<u8>(PAGE_SIZE64, &0).unwrap();
gm.write_plain::<u16>(PAGE_SIZE64 * 3 - 1, &0).unwrap_err();
gm.read_plain::<u16>(PAGE_SIZE64 * 3 - 1).unwrap_err();
gm.read_plain::<u8>(PAGE_SIZE64 * 3 - 1).unwrap();
gm.write_plain::<u8>(PAGE_SIZE64 * 3 - 1, &0).unwrap_err();
}
#[test]
fn test_allocated() {
let mut gm = GuestMemory::allocate(0x10000);
let pattern = [0x42; 0x10000];
gm.write_at(0, &pattern).unwrap();
assert_eq!(gm.inner_buf_mut().unwrap(), &pattern);
gm.inner_buf().unwrap();
let gm2 = gm.clone();
assert!(gm.inner_buf_mut().is_none());
gm.inner_buf().unwrap();
let mut gm = gm.into_inner_buf().unwrap_err();
drop(gm2);
assert_eq!(gm.inner_buf_mut().unwrap(), &pattern);
gm.into_inner_buf().unwrap();
}
}