flowey_lib_hvlite/init_cross_build.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Install dependencies and set environment variables for cross compiling
use flowey::node::prelude::*;
use std::collections::BTreeMap;
flowey_request! {
pub struct Request {
pub target: target_lexicon::Triple,
pub injected_env: WriteVar<BTreeMap<String, String>>,
}
}
new_flow_node!(struct Node);
impl FlowNode for Node {
type Request = Request;
fn imports(ctx: &mut ImportCtx<'_>) {
ctx.import::<flowey_lib_common::install_dist_pkg::Node>();
}
fn emit(requests: Vec<Self::Request>, ctx: &mut NodeCtx<'_>) -> anyhow::Result<()> {
let host_platform = ctx.platform();
let host_arch = ctx.arch();
let native = |target: &target_lexicon::Triple| -> bool {
let platform = match target.operating_system {
target_lexicon::OperatingSystem::Windows => FlowPlatform::Windows,
target_lexicon::OperatingSystem::Linux => {
FlowPlatform::Linux(FlowPlatformLinuxDistro::Ubuntu)
}
target_lexicon::OperatingSystem::Darwin(_) => FlowPlatform::MacOs,
_ => return false,
};
let arch = match target.architecture {
target_lexicon::Architecture::X86_64 => FlowArch::X86_64,
target_lexicon::Architecture::Aarch64(_) => FlowArch::Aarch64,
_ => return false,
};
host_platform == platform && host_arch == arch
};
for Request {
target,
injected_env: injected_env_write,
} in requests
{
let mut pre_build_deps = Vec::new();
let mut injected_env = BTreeMap::new();
if !native(&target) {
match (ctx.platform(), target.operating_system) {
(FlowPlatform::Linux(_), target_lexicon::OperatingSystem::Linux) => {
let (gcc_pkg, bin) = match target.architecture {
target_lexicon::Architecture::Aarch64(_) => {
("gcc-aarch64-linux-gnu", "aarch64-linux-gnu-gcc")
}
target_lexicon::Architecture::X86_64 => {
("gcc-x86-64-linux-gnu", "x86_64-linux-gnu-gcc")
}
arch => anyhow::bail!("unsupported arch {arch}"),
};
// We use `gcc`'s linker for cross-compiling due to:
//
// * The special baremetal options are the same. These options
// don't work for the LLVM linker,
// * The compiler team at Microsoft has stated that `rust-lld`
// is not a production option,
// * The only Rust `aarch64` targets that produce
// position-independent static ELF binaries with no std are
// `aarch64-unknown-linux-*`.
pre_build_deps.push(ctx.reqv(|v| {
flowey_lib_common::install_dist_pkg::Request::Install {
package_names: vec![gcc_pkg.into()],
done: v,
}
}));
// when cross compiling for gnu linux, explicitly set the
// linker being used.
//
// Note: Don't do this for musl, since for that we use the
// openhcl linker set in the repo's `.cargo/config.toml`
// This isn't ideal because it means _any_ musl code (not just
// code running in VTL2) will use the openhcl-specific musl
if matches!(target.environment, target_lexicon::Environment::Gnu) {
injected_env.insert(
format!(
"CARGO_TARGET_{}_LINKER",
target.to_string().replace('-', "_").to_uppercase()
),
bin.into(),
);
}
}
// Cross compiling for Windows relies on the appropriate
// Visual Studio Build Tools components being installed.
// The necessary libraries can be accessed from WSL,
// allowing for compilation of Windows applications from Linux.
// For now, just silently continue regardless.
// TODO: Detect (and potentially install) these dependencies
(FlowPlatform::Linux(_), target_lexicon::OperatingSystem::Windows) => {}
(FlowPlatform::Windows, target_lexicon::OperatingSystem::Windows) => {}
(_, target_lexicon::OperatingSystem::None_) => {}
(_, target_lexicon::OperatingSystem::Uefi) => {}
(host_os, target_os) => {
anyhow::bail!("cannot cross compile for {target_os} on {host_os}")
}
}
}
ctx.emit_minor_rust_step("inject cross env", |ctx| {
pre_build_deps.claim(ctx);
let injected_env_write = injected_env_write.claim(ctx);
move |rt| {
rt.write(injected_env_write, &injected_env);
}
});
}
Ok(())
}
}