floppy_pcat_stub/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Stub Intel 82077AA Floppy Disk Controller, implementing a minimal subset of
//! functionality required to boot using the Microsoft PCAT BIOS.
//!
//! It will unconditionally report that no floppy drives are present.
#![warn(missing_docs)]
#![forbid(unsafe_code)]
use arrayvec::ArrayVec;
use bitfield_struct::bitfield;
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::pio::ControlPortIoIntercept;
use chipset_device::pio::PortIoIntercept;
use chipset_device::pio::RegisterPortIoIntercept;
use chipset_device::poll_device::PollDevice;
use chipset_device::ChipsetDevice;
use inspect::Inspect;
use inspect::InspectMut;
use open_enum::open_enum;
use vmcore::device_state::ChangeDeviceState;
use vmcore::line_interrupt::LineInterrupt;
const FIFO_SIZE: usize = 16;
const INVALID_COMMAND_STATUS: u8 = 0x80;
const FLOPPY_DSR_DISK_RESET_MASK: u8 = 0x80;
const ENHANCED_CONTROLLER_VERSION: u8 = 0x90;
const FLOPPY_STATUS0_MASK: u8 = 0xC0;
const FLOPPY_STATUS0_SEEK_END: u8 = 0x20;
const NO_TAPE_DRIVES_PRESENT: u8 = 0xFC;
open_enum! {
#[derive(Default)]
enum RegisterOffset: u16 {
STATUS_A = 0, // Read-only
STATUS_B = 1, // Read-only
DIGITAL_OUTPUT = 2,
TAPE_DRIVE = 3, // Obsolete
MAIN_STATUS = 4, // Read-only
DATA_RATE = 4, // Write-only
DATA = 5,
DIGITAL_INPUT = 7,// Read-only
CONFIG_CONTROL = 7, // Write-only
}
}
/// Floppy DOR - digital output register
#[derive(Inspect)]
#[bitfield(u8)]
pub struct DigitalOutput {
#[bits(2)]
_drive_select: u8,
controller_enabled: bool,
dma_enabled: bool,
// This is really 4 separate bools, but for our convenience we treat
// it as a large number.
#[bits(4)]
motors_active: u8,
}
/// Floppy main status register
#[derive(Inspect)]
#[bitfield(u8)]
pub struct MainStatus {
// This is really 4 separate bools, but for our convenience we treat
// it as a large number.
#[bits(4)]
active_drives: u8,
/// Indicates if the controller is currently executing a command
busy: bool,
_non_dma_mode: bool,
/// Data input/output (1 - output data to CPU, 0 - receive data from CPU).
/// Holds no meaning if main_request is not set.
data_direction: bool,
/// Indicates whether controller is ready to receive or send
/// data or commands via the data registers
main_request: bool,
}
open_enum! {
#[derive(Inspect)]
#[inspect(debug)]
enum FloppyCommand: u8 {
SPECIFY = 0x3,
SENSE_DRIVE_STATUS = 0x4,
RECALIBRATE = 0x7,
SENSE_INTERRUPT_STATUS = 0x8,
DUMP_REGISTERS = 0xE,
SEEK = 0xF,
VERSION = 0x10,
PERP288_MODE = 0x12,
CONFIGURE = 0x13,
UNLOCK_FIFO_FUNCTIONS = 0x14,
PART_ID = 0x18,
LOCK_FIFO_FUNCTIONS = 0x94,
}
}
impl FloppyCommand {
// Floppy commands are written one byte at a time to the DATA register. The
// first byte specifies the issued command. The remaining bytes are used as
// inputs for the command.
fn input_bytes_needed(&self) -> usize {
// Add one to account for the command byte itself
1 + match *self {
Self::SPECIFY => 2,
Self::SENSE_DRIVE_STATUS => 1,
Self::RECALIBRATE => 1,
Self::SENSE_INTERRUPT_STATUS => 0,
Self::DUMP_REGISTERS => 0,
Self::SEEK => 2,
Self::VERSION => 0,
Self::PERP288_MODE => 1,
Self::CONFIGURE => 3,
Self::UNLOCK_FIFO_FUNCTIONS => 0,
Self::PART_ID => 0,
Self::LOCK_FIFO_FUNCTIONS => 0,
_ => 0,
}
}
}
impl ChangeDeviceState for StubFloppyDiskController {
fn start(&mut self) {}
async fn stop(&mut self) {}
async fn reset(&mut self) {
self.reset(false);
}
}
impl ChipsetDevice for StubFloppyDiskController {
fn supports_pio(&mut self) -> Option<&mut dyn PortIoIntercept> {
Some(self)
}
fn supports_poll_device(&mut self) -> Option<&mut dyn PollDevice> {
Some(self)
}
}
// Must implement this trait so this can "slot-in" where the real floppy
// controller would be
impl PollDevice for StubFloppyDiskController {
fn poll_device(&mut self, _cx: &mut std::task::Context<'_>) {}
}
impl PortIoIntercept for StubFloppyDiskController {
fn io_read(&mut self, io_port: u16, data: &mut [u8]) -> IoResult {
if data.len() != 1 {
return IoResult::Err(IoError::InvalidAccessSize);
}
let mut io_result = IoResult::Ok;
let offset = RegisterOffset(io_port % 0x10);
data[0] = match offset {
// This port is completely unsupported by latest floppy controllers.
RegisterOffset::STATUS_A => 0xFF,
// Also unsupported but return 0xFC to indicate no tape drives present.
RegisterOffset::STATUS_B => NO_TAPE_DRIVES_PRESENT,
// Do nothing. This port is obsolete.
RegisterOffset::TAPE_DRIVE => 0xFF,
// Now the ports that actually do something.
RegisterOffset::DIGITAL_OUTPUT => self.state.digital_output.0,
RegisterOffset::MAIN_STATUS => {
// Indicate data register is ready for reading/writing.
if self.state.digital_output.controller_enabled() {
self.state.main_status.0
} else {
0
}
}
RegisterOffset::DATA => {
// If there are more bytes left to read then read them out now.
if let Some(result) = self.state.output_bytes.pop() {
self.state.main_status.set_active_drives(0);
if self.state.output_bytes.is_empty() {
// Reverse direction, now ready to receive a new command
self.state.main_status.set_data_direction(false);
self.state.main_status.set_busy(false);
}
result
} else {
INVALID_COMMAND_STATUS
}
}
RegisterOffset::DIGITAL_INPUT => {
// The bottom seven bits are tristated, and always read as
// ones on a real floppy controller.
if self.state.digital_output.motors_active() != 0 {
0xff
} else {
0x7f
}
}
_ => {
io_result = IoResult::Err(IoError::InvalidRegister);
0
}
};
tracing::trace!(?io_port, ?offset, ?data, "io port read");
io_result
}
fn io_write(&mut self, io_port: u16, data: &[u8]) -> IoResult {
if data.len() != 1 {
return IoResult::Err(IoError::InvalidAccessSize);
}
let data = data[0];
let offset = RegisterOffset(io_port % 0x10);
tracing::trace!(?io_port, ?offset, ?data, "io port write");
match offset {
RegisterOffset::STATUS_A | RegisterOffset::STATUS_B => {
tracelimit::warn_ratelimited!(?offset, "write to read-only floppy status register");
}
RegisterOffset::TAPE_DRIVE => {} // Do nothing. This port is obsolete.
RegisterOffset::CONFIG_CONTROL => {} // ignore writes
RegisterOffset::DATA_RATE => {
if self.state.digital_output.controller_enabled()
&& (data & FLOPPY_DSR_DISK_RESET_MASK) != 0
{
self.reset(true);
self.state.sense_output = Some(SenseOutput::ResetCounter { count: 4 });
// Always trigger a reset interrupt, even though DMA will be disabled
self.raise_interrupt(true);
tracing::trace!("Un-resetting - asserting floppy interrupt");
}
}
RegisterOffset::DIGITAL_OUTPUT => {
let new_digital_output = DigitalOutput::from(data);
let was_reset = !self.state.digital_output.controller_enabled();
let is_reset = !new_digital_output.controller_enabled();
let interrupts_were_enabled = self.state.digital_output.dma_enabled();
let interrupts_enabled = new_digital_output.dma_enabled();
self.state.digital_output = new_digital_output;
if was_reset && !is_reset {
tracing::trace!("un-resetting - asserting floppy interrupt");
self.state.sense_output = Some(SenseOutput::ResetCounter { count: 4 });
// Always trigger a reset interrupt, regardless of DMA configuration
self.raise_interrupt(true);
} else if is_reset {
self.reset(true);
} else {
if !interrupts_were_enabled && interrupts_enabled {
tracing::trace!("Re-enabling floppy interrupts");
self.raise_interrupt(false);
} else if interrupts_were_enabled && !interrupts_enabled {
tracing::trace!("Disabling floppy interrupts");
self.lower_interrupt();
}
}
}
RegisterOffset::DATA => {
if !self.state.digital_output.controller_enabled() {
// Do not handle commands if we're in a reset state.
return IoResult::Ok;
}
tracing::trace!(
?data,
?self.state.input_bytes,
"floppy command byte"
);
self.state.output_bytes.clear();
self.state.input_bytes.push(data);
self.state.main_status.set_busy(true);
let command = FloppyCommand(self.state.input_bytes[0]);
if self.state.input_bytes.len() < command.input_bytes_needed() {
return IoResult::Ok;
}
tracing::trace!(
?command,
input_bytes = ?self.state.input_bytes,
"executing floppy command"
);
match command {
FloppyCommand::SPECIFY => {
// Head timing information is returned as part of the
// DUMP REGISTERS command. This command also specifies
// whether DMA is enabled but this is ignored for now.
self.state.scd = [self.state.input_bytes[1], self.state.input_bytes[2]];
}
FloppyCommand::SENSE_DRIVE_STATUS => {
// The lowest bit specifies the drive number, the next
// is the track, the last is the head.
// These get reported back in the output.
let input_info = self.state.input_bytes[1] & 0b111;
let mut result = 0x28 | input_info;
if self.state.cur_cylinder == 0 {
result |= 0x10;
}
self.state.output_bytes.push(result);
if let Some(SenseOutput::Value { ref mut value }) = self.state.sense_output
{
*value |= FLOPPY_STATUS0_SEEK_END;
}
}
FloppyCommand::RECALIBRATE | FloppyCommand::SEEK => {
self.state.cur_cylinder = if matches!(command, FloppyCommand::SEEK) {
self.state.input_bytes[2]
} else {
0
};
// We don't have any hardware that needs to move, so just
// immediately signal completion. These commands can interrupt
// a reset sequence, most can't.
match self.state.sense_output {
Some(SenseOutput::Value { ref mut value }) => {
*value |= FLOPPY_STATUS0_SEEK_END
}
_ => {
self.state.sense_output = Some(SenseOutput::Value {
value: FLOPPY_STATUS0_SEEK_END,
})
}
}
// Set the appropriate disk to active
self.state.main_status.set_active_drives(
self.state.main_status.active_drives()
| (1 << (self.state.input_bytes[1] & 0x3)),
);
self.raise_interrupt(false);
}
FloppyCommand::SENSE_INTERRUPT_STATUS => {
self.state.output_bytes.push(self.state.cur_cylinder);
match self.state.sense_output {
Some(SenseOutput::ResetCounter { ref mut count }) => {
self.state
.output_bytes
.push(FLOPPY_STATUS0_MASK | (4 - *count));
*count -= 1;
if *count == 0 {
self.state.sense_output = None;
}
}
Some(SenseOutput::Value { value }) => {
self.state.output_bytes.push(value);
self.state.sense_output = None;
}
None => {
self.state.output_bytes.push(INVALID_COMMAND_STATUS);
}
}
tracing::trace!(
"sense interrupt status cmd - deasserting floppy interrupt"
);
self.lower_interrupt();
}
FloppyCommand::DUMP_REGISTERS => {
self.state.output_bytes.push(self.state.cur_cylinder);
self.state.output_bytes.push(0); // drive 1 cur cylinder, drive disabled -> 0
self.state.output_bytes.push(0); // unknown hardcoded 0, maybe drive 2?
self.state.output_bytes.push(0); // unknown hardcoded 0, maybe drive 3?
self.state.output_bytes.push(self.state.scd[0]);
self.state.output_bytes.push(self.state.scd[1]);
self.state.output_bytes.push(0); // cur floppy sectors per track, no media -> 0
self.state.output_bytes.push(0); // unknown hardcoded 0, perpendicular info?
self.state.output_bytes.push(0); // configure info (never set?)
self.state.output_bytes.push(0); // write precomp (never set?)
}
FloppyCommand::VERSION => {
self.state.output_bytes.push(ENHANCED_CONTROLLER_VERSION);
}
FloppyCommand::PERP288_MODE => {} // Ignore the data byte. No response, no interrupt.
FloppyCommand::CONFIGURE => {} // Ignore the data bytes. No response, no interrupt.
FloppyCommand::PART_ID => {
self.state.output_bytes.push(0x01);
}
// These commands lock out or unlock software resets. Ignore the lock command but respond as if we care.
// Pass back lock/unlock bit in bit 4.
FloppyCommand::UNLOCK_FIFO_FUNCTIONS => {
self.state.output_bytes.push(0);
}
FloppyCommand::LOCK_FIFO_FUNCTIONS => {
self.state.output_bytes.push(0x10);
}
_ => {
tracing::debug!(?command, "unimplemented/unsupported command");
self.state.output_bytes.push(INVALID_COMMAND_STATUS);
}
}
self.state.input_bytes.clear();
if self.state.output_bytes.is_empty() {
self.state.main_status.set_busy(false);
} else {
// Sets IO direction to Controller -> Host
self.state.main_status.set_data_direction(true);
}
// Possibly add PCAT BIOS wait cancellation enlightenment to indicate
// emulated device activity.
}
_ => return IoResult::Err(IoError::InvalidRegister),
}
IoResult::Ok
}
}
#[derive(Clone, Inspect)]
struct FloppyState {
digital_output: DigitalOutput,
main_status: MainStatus,
// Used for command input
#[inspect(bytes)]
input_bytes: ArrayVec<u8, FIFO_SIZE>,
// Used for output status/results
#[inspect(bytes)]
output_bytes: ArrayVec<u8, FIFO_SIZE>,
scd: [u8; 2],
sense_output: Option<SenseOutput>,
// HACK: Our DSDT always reports that only 1 drive is available.
// If this changes in the future proper drive selection and indexing will
// need to be implemented here.
cur_cylinder: u8,
// Needed for save/restore
interrupt_level: bool,
}
#[derive(Clone, Inspect)]
#[inspect(external_tag)]
enum SenseOutput {
ResetCounter { count: u8 },
Value { value: u8 },
}
impl FloppyState {
fn new() -> Self {
Self {
digital_output: DigitalOutput::new(),
main_status: MainStatus::new(),
cur_cylinder: 0,
input_bytes: ArrayVec::new(),
output_bytes: ArrayVec::new(),
scd: [0; 2],
sense_output: None,
interrupt_level: false,
}
}
}
#[derive(Inspect)]
struct FloppyRt {
interrupt: LineInterrupt,
pio_base: Box<dyn ControlPortIoIntercept>,
pio_control: Box<dyn ControlPortIoIntercept>,
}
/// Stub implementation of the Intel 82077AA Floppy Disk Controller.
#[derive(InspectMut)]
pub struct StubFloppyDiskController {
// Runtime glue
rt: FloppyRt,
// Volatile state
state: FloppyState,
}
impl StubFloppyDiskController {
/// Create a new `StubFloppyDiskController` instance.
pub fn new(
interrupt: LineInterrupt,
register_pio: &mut dyn RegisterPortIoIntercept,
pio_base_addr: u16,
) -> Self {
let mut pio_base = register_pio.new_io_region("floppy base", 6);
let mut pio_control = register_pio.new_io_region("floppy control", 1);
pio_base.map(pio_base_addr);
// take note of the 1-byte "hole" in this register space!
// it is important, as it turns out that IDE controllers like to claim this port for themselves!
pio_control.map(pio_base_addr + RegisterOffset::DIGITAL_INPUT.0);
Self {
rt: FloppyRt {
interrupt,
pio_base,
pio_control,
},
state: FloppyState::new(),
}
}
/// Return the offset of `addr` from the region's base address.
///
/// Returns `None` if the provided `addr` is outside of the memory
/// region, or the region is currently unmapped.
pub fn offset_of(&self, addr: u16) -> Option<u16> {
self.rt.pio_base.offset_of(addr).or_else(|| {
self.rt
.pio_control
.offset_of(addr)
.map(|_| RegisterOffset::DIGITAL_INPUT.0)
})
}
fn raise_interrupt(&mut self, is_reset: bool) {
if self.state.digital_output.dma_enabled() || is_reset {
self.rt.interrupt.set_level(true);
self.state.interrupt_level = true;
}
}
fn lower_interrupt(&mut self) {
self.rt.interrupt.set_level(false);
self.state.interrupt_level = false;
}
fn reset(&mut self, preserve_digital_output: bool) {
self.lower_interrupt();
self.state = FloppyState {
digital_output: if preserve_digital_output {
self.state.digital_output
} else {
DigitalOutput::new()
},
..FloppyState::new()
};
// Main request will always be true for us as we don't support actually
// returning any data or delaying interrupts today. If these conditions
// change then more careful handling of main request may be necessary.
self.state.main_status.set_main_request(true);
tracing::trace!(
preserve_digital_output,
"controller reset - deasserting floppy interrupt"
);
}
}
mod save_restore {
use super::*;
use vmcore::save_restore::RestoreError;
use vmcore::save_restore::SaveError;
use vmcore::save_restore::SaveRestore;
mod state {
use mesh::payload::Protobuf;
use vmcore::save_restore::SavedStateRoot;
#[derive(Protobuf, SavedStateRoot)]
#[mesh(package = "chipset.floppy")]
pub struct SavedState {
#[mesh(1)]
pub digital_output: u8,
#[mesh(2)]
pub main_status: u8,
#[mesh(3)]
pub input_bytes: Vec<u8>,
#[mesh(4)]
pub output_bytes: Vec<u8>,
#[mesh(5)]
pub scd: [u8; 2],
#[mesh(6)]
pub interrupt_output: Option<SavedInterruptOutput>,
#[mesh(7)]
pub interrupt_level: bool,
// Below fields are for future-proofing:
// Unused today as we only support one drive.
#[mesh(8)]
pub cur_drive: u8,
// Only cur_cylinder of the first floppy is used today.
#[mesh(9)]
pub floppies: [SavedFloppyState; 4],
}
#[derive(Protobuf, Default)]
#[mesh(package = "chipset.floppy")]
pub struct SavedFloppyState {
#[mesh(1)]
pub cur_cylinder: u8,
#[mesh(2)]
pub cur_head: u8,
#[mesh(3)]
pub cur_sector: u8,
}
#[derive(Protobuf)]
#[mesh(package = "chipset.floppy")]
pub enum SavedInterruptOutput {
#[mesh(1)]
ResetCounter {
#[mesh(1)]
count: u8,
},
#[mesh(2)]
Value {
#[mesh(1)]
value: u8,
},
}
impl From<SavedInterruptOutput> for super::SenseOutput {
fn from(value: SavedInterruptOutput) -> Self {
match value {
SavedInterruptOutput::ResetCounter { count } => {
super::SenseOutput::ResetCounter { count }
}
SavedInterruptOutput::Value { value } => super::SenseOutput::Value { value },
}
}
}
impl From<super::SenseOutput> for SavedInterruptOutput {
fn from(value: super::SenseOutput) -> Self {
match value {
super::SenseOutput::ResetCounter { count } => {
SavedInterruptOutput::ResetCounter { count }
}
super::SenseOutput::Value { value } => SavedInterruptOutput::Value { value },
}
}
}
}
impl SaveRestore for StubFloppyDiskController {
type SavedState = state::SavedState;
fn save(&mut self) -> Result<Self::SavedState, SaveError> {
let FloppyState {
digital_output,
main_status,
ref input_bytes,
ref output_bytes,
scd,
sense_output: ref interrupt_output,
interrupt_level,
cur_cylinder,
} = self.state;
let saved_state = state::SavedState {
digital_output: digital_output.into(),
main_status: main_status.into(),
input_bytes: input_bytes.to_vec(),
output_bytes: output_bytes.to_vec(),
scd,
interrupt_output: interrupt_output.clone().map(|x| x.into()),
interrupt_level,
cur_drive: 0,
floppies: [
state::SavedFloppyState {
cur_cylinder,
..state::SavedFloppyState::default()
},
state::SavedFloppyState::default(),
state::SavedFloppyState::default(),
state::SavedFloppyState::default(),
],
};
Ok(saved_state)
}
fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
let state::SavedState {
digital_output,
main_status,
input_bytes,
output_bytes,
scd,
interrupt_output,
interrupt_level,
cur_drive: _,
floppies,
} = state;
self.state = FloppyState {
digital_output: digital_output.into(),
main_status: main_status.into(),
input_bytes: input_bytes.as_slice().try_into().map_err(
|e: arrayvec::CapacityError| RestoreError::InvalidSavedState(e.into()),
)?,
output_bytes: output_bytes.as_slice().try_into().map_err(
|e: arrayvec::CapacityError| RestoreError::InvalidSavedState(e.into()),
)?,
scd,
sense_output: interrupt_output.map(|x| x.into()),
interrupt_level,
cur_cylinder: floppies[0].cur_cylinder,
};
self.rt.interrupt.set_level(interrupt_level);
Ok(())
}
}
}