floppy/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Emulator for the Intel 82077AA CHMOS Single-Chip Floppy Disk Controller.
//!
//! Some notable limitations of the current implementation:
//!
//! - no support for more than one attached floppy drive
//! - no support for hot-add/remove of floppy disks
//!
//! While there's no _pressing_ need to address these limitations, it would
//! certainly be _cool_ if we could implement that functionality at some point.
//!
//! # Accuracy
//!
//! This emulator is not 100% accurate, and does not implement all documented
//! features of the 82077AA floppy disk controller. Rather, it implements a
//! "pragmatic subset" of features that allow it to have "good-enough"
//! compatibility with both modern and legacy operating systems.
//!
//! New features are only added on a case-by-case basis whenever a particular
//! bit of software happens to require it.
//
// DEVNOTE: this implementation began life as a straight port of the existing
// C++ code from Hyper-V, and while there has been some effort put into
// reorganizing and refactoring the code to be more Rust-y, there's still quite
// a ways to go.

#![warn(missing_docs)]
#![forbid(unsafe_code)]

use self::floppy_sizes::FloppyImageType;
use self::protocol::FloppyCommand;
use self::protocol::RegisterOffset;
use self::protocol::FLOPPY_TOTAL_CYLINDERS;
use self::protocol::INVALID_COMMAND_STATUS;
use self::protocol::STANDARD_FLOPPY_SECTOR_SIZE;
use arrayvec::ArrayVec;
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::pio::ControlPortIoIntercept;
use chipset_device::pio::PortIoIntercept;
use chipset_device::pio::RegisterPortIoIntercept;
use chipset_device::poll_device::PollDevice;
use chipset_device::ChipsetDevice;
use core::sync::atomic::Ordering;
use disk_backend::Disk;
use guestmem::ranges::PagedRange;
use guestmem::AlignedHeapMemory;
use guestmem::GuestMemory;
use inspect::Inspect;
use inspect::InspectMut;
use scsi_buffers::RequestBuffers;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;
use std::task::Waker;
use thiserror::Error;
use vmcore::device_state::ChangeDeviceState;
use vmcore::isa_dma_channel::IsaDmaChannel;
use vmcore::isa_dma_channel::IsaDmaDirection;
use vmcore::line_interrupt::LineInterrupt;

mod floppy_sizes {
    use super::protocol::FLOPPY_TOTAL_CYLINDERS;
    use super::protocol::STANDARD_FLOPPY_SECTOR_SIZE;

    const HDMSS_SECTORS_PER_TRACK: u8 = 23;
    const DMF_SECTORS_PER_TRACK: u8 = 21;
    const HD_SECTORS_PER_TRACK: u8 = 18;
    const MD_SECTORS_PER_TRACK: u8 = 15;
    const LD_SECTORS_PER_TRACK: u8 = 9;

    const fn calculate_image_size(sectors_per_track: u8) -> u64 {
        sectors_per_track as u64
            * STANDARD_FLOPPY_SECTOR_SIZE as u64
            * FLOPPY_TOTAL_CYLINDERS as u64
            * 2
    }

    const HDMSS_FLOPY_IMAGE_SIZE: u64 = calculate_image_size(HDMSS_SECTORS_PER_TRACK);
    const DMF_FLOPPY_IMAGE_SIZE: u64 = calculate_image_size(DMF_SECTORS_PER_TRACK);
    const HD_FLOPPY_IMAGE_SIZE: u64 = calculate_image_size(HD_SECTORS_PER_TRACK);
    const MD_FLOPPY_IMAGE_SIZE: u64 = calculate_image_size(MD_SECTORS_PER_TRACK);
    const LD_FLOPPY_IMAGE_SIZE: u64 = calculate_image_size(LD_SECTORS_PER_TRACK);
    const LDSS_FLOPPY_IMAGE_SIZE: u64 = calculate_image_size(LD_SECTORS_PER_TRACK) / 2;

    pub enum FloppyImageType {
        /// Low-density disks, single sided (360Kb)
        LowDensitySingleSided,
        /// Low-density disks (720Kb)
        LowDensity,
        /// Medium-density disks (1.2Mb)
        MediumDensity,
        /// High-density disks (1.44MB)
        HighDensity,
        /// DMF (distribution media format) disks (1.68Mb)
        Dmf,
        /// High-density Multiple Sector Size (MSS) used by eXtended
        /// Distribution Format (XDF) (1.72Mb)
        HighDensityMss,
    }

    impl FloppyImageType {
        pub fn sectors(&self) -> u8 {
            match self {
                FloppyImageType::LowDensity => LD_SECTORS_PER_TRACK,
                FloppyImageType::HighDensity => HD_SECTORS_PER_TRACK,
                FloppyImageType::Dmf => DMF_SECTORS_PER_TRACK,
                FloppyImageType::LowDensitySingleSided => LD_SECTORS_PER_TRACK,
                FloppyImageType::MediumDensity => MD_SECTORS_PER_TRACK,
                FloppyImageType::HighDensityMss => HDMSS_SECTORS_PER_TRACK,
            }
        }

        pub fn from_file_size(file_size: u64) -> Option<Self> {
            let res = match file_size {
                HD_FLOPPY_IMAGE_SIZE => FloppyImageType::HighDensity,
                DMF_FLOPPY_IMAGE_SIZE => FloppyImageType::Dmf,
                LD_FLOPPY_IMAGE_SIZE => FloppyImageType::LowDensity,
                MD_FLOPPY_IMAGE_SIZE => FloppyImageType::MediumDensity,
                LDSS_FLOPPY_IMAGE_SIZE => FloppyImageType::LowDensitySingleSided,
                HDMSS_FLOPY_IMAGE_SIZE => FloppyImageType::HighDensityMss,
                _ => return None,
            };
            Some(res)
        }
    }
}

mod protocol {
    use bitfield_struct::bitfield;
    use inspect::Inspect;
    use open_enum::open_enum;

    pub const FIFO_SIZE: usize = 16;

    pub const INVALID_COMMAND_STATUS: u8 = 0x80; // returned by e.g., SENSE_INTERRUPT_STATUS on err

    pub const STANDARD_FLOPPY_SECTOR_SIZE: usize = 512;
    pub const FLOPPY_TOTAL_CYLINDERS: u8 = 80;

    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct InputRegister {
        #[bits(2)]
        pub drive_select: u8,
        #[bits(1)]
        pub head: u8,
        #[bits(5)]
        unused2: u8,
    }

    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct StatusRegister0 {
        #[bits(2)]
        pub drive_select: u8,
        #[bits(1)]
        pub head: u8,
        #[bits(2)]
        unused: u8,
        pub seek_end: bool,
        pub abnormal_termination: bool,
        pub invalid_command: bool,
    }

    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct StatusRegister1 {
        pub missing_address: bool,
        pub write_protected: bool,
        pub no_data: bool,
        #[bits(5)]
        unused: u8,
    }

    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct StatusRegister2 {
        pub missing_address: bool,
        pub bad_cylinder: bool,
        #[bits(6)]
        unused: u8,
    }

    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct StatusRegister3 {
        #[bits(2)]
        pub drive_select: u8,
        #[bits(1)]
        pub head: u8,
        pub unused1: bool, // This bit is always 1
        pub track0: bool,
        pub unused2: bool, // This bit is always 1
        pub write_protected: bool,
        pub unused3: bool, // This bit is always 0
    }

    open_enum! {
        #[derive(Default)]
        pub enum RegisterOffset: u16 {
            STATUS_A = 0, // Read-only
            STATUS_B = 1, // Read-only
            DIGITAL_OUTPUT = 2,
            TAPE_DRIVE = 3, // Obsolete
            MAIN_STATUS = 4, // Read-only
            DATA_RATE = 4, // Write-only
            DATA = 5,
            DIGITAL_INPUT = 7,// Read-only
            CONFIG_CONTROL = 7, // Write-only
        }
    }

    /// Floppy DOR - digital output register (read/write)
    // Drive Select bits is [1:0]
    // Reset bits is        [2]
    // Not DMA Gate bit is  [3]
    // Motor enable bits is [7:4]. Each bit for EN0, EN1, ..., EN4
    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct DigitalOutputRegister {
        // A good item to note are the drive activation (drive select and motor enable) values:
        // DOR value= 0x1C for drive= 0,
        // DOR value= 0x2D for drive= 1,
        // DOR value= 0x4E for drive= 2,
        // DOR value= 0x8F for drive= 3,
        #[bits(2)]
        pub _drive_select: u8,

        // effectively, `not reset` 1 is true, 0 is false (meaning resetting)
        pub controller_enabled: bool,

        // bit high only in PC-AT and Model 30 modes
        pub dma_enabled: bool,

        // This is really 4 separate bools, but for our convenience we treat
        // it as a large number (one-hot encoding).
        #[bits(4)]
        pub motors_active: u8,
    }

    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    pub enum DataDirection {
        /// Write to guest memory. Also to indicate the
        /// direction of a data transfer (0 indicates a
        /// write is required -- an inward FIFO
        /// direction).
        Write = 0,
        /// Read from guest memory.  Also to indicate the
        /// direction of a data transfer (1 indicates a
        /// read is required -- an outward FIFO
        /// direction).
        Read = 1,
    }

    impl DataDirection {
        pub fn as_bool(self) -> bool {
            match self {
                Self::Write => false,
                Self::Read => true,
            }
        }
    }

    /// Floppy MSR - main status register (read-only)
    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct MainStatusRegister {
        // This is really 4 separate bools, but for our convenience we treat
        // it as a large number. E.g. one-hot encoded for DRV0, ..., DRV3
        #[bits(4)]
        pub active_drives: u8,
        /// Indicates if the controller is currently executing a command
        pub busy: bool,
        /// Non DMA mode is not supported
        pub non_dma_mode: bool,
        /// Data input/output (1 - output data to CPU (read), 0 - receive data from CPU (write)).
        /// Holds no meaning if main_request is not set.
        pub data_direction: bool, // DataDirection
        /// Indicates whether controller is ready to receive or send
        /// data or commands via the data registers
        pub main_request: bool,
    }

    /// Floppy DIR - digital input register (read-only)
    // e.g., return current data-rate set via ConfigControl
    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct DigitalInputRegister {
        // in PC-AT, all bits except for msb always tristated
        #[bits(7)]
        pub tristated: u8,

        #[bits(1)]
        pub disk_change: bool,
    }

    open_enum! {
        #[derive(Default)]
        // #[inspect(debug)]
        /// RECALIBRATE, SEEK, RELATIVE SEEK generate interrupts but do not clear
        /// the signal themselves. The rest don't forget to clear if applicable.
        pub enum FloppyCommand: u8 {
            // high nibble may be 6, C, or E, based on bit values
            // for MT, MFM, and SK
            // READ_DATA = 0x06,
            // READ_DEL_DATA = 0x0C,
            // WRITE_DATA = 0x05,
            // WRITE_DEL_DATA = 0x09,
            // READ_TRACK = 0x02,
            VERIFY = 0x16,
            VERIFY2 = 0xF6,
            /// Just checks if controller is newer/enhanced type, or old type.
            /// Return value of 0x90 indicates enhanced type.
            VERSION = 0x10,
            FORMAT_TRACK = 0x4D,
            FORMAT_DOUBLE_DENSITY_MODE = 0xCD,
            // SCAN_EQUAL = 0x11,
            SCAN_EQUAL_ALL = 0xD1,
            SCAN_EQUAL = 0xF1,
            SCAN_LOW_OR_EQUAL = 0x19,
            SCAN_HIGH_OR_EQUAL = 0x1D,
            /// Recalibrate command moves the read/write head back to position on
            /// track 0. On physical floppy disk, there is a TRACK0 pin that goes
            /// high when head reaches track 0. If disk has more than something
            /// like 80 tracks, recalibrate would be needed to be called multiple
            /// times (command simply does e.g., 79 steps via stepper motor pulse,
            /// checking if each track is track 0)
            ///
            /// SENSE_INTERRUPT_STATUS must immediately follow, due to RECALIBRATE
            /// not having result phase of its own in original design to lower
            /// interrupt signal.
            RECALIBRATE = 0x07,
            /// Will clear interrupt signal, and determine what raised the
            /// interrupt. Returns 0x80 if command issued when there are no
            /// active interrupts.
            ///
            /// Must be called directly after RECALIBRATE and either type of SEEK.
            SENSE_INTERRUPT_STATUS = 0x08,
            /// Provide the Stepping Rate Time (SRT) to be used to set the rate at
            /// which step pulses are issued to move between tracks during a SEEK
            /// or RECALIBRATE. Also sets initial values for Head Unload Timer
            /// (HUT), and Head Load Time (HLT). HUT defines time from end of
            /// execution to head unload state, and HLT defines time between signal
            /// for R/W operation raised, and operation begin.
            SPECIFY = 0x03,
            /// Simply returns drive state information. Directly proceeds to result
            /// phase (e.g., no execution phase).
            SENSE_DRIVE_STATUS = 0x04,
            DRIVE_SPECIFICATION_COMMAND = 0x8E,
            /// SEEK command moves the read/write head from track to track. Using
            /// correct technicalities, the terms `track` and `cylinder` are some-
            /// what synonymous. Consider a physical floppy disk -- it is a disk
            /// with two sides. Each side is called a head. The concentric rings
            /// that are on each head are called tracks. Each head has e.g., a
            /// track 18. Together these two track 18s form a cylinder. But, if
            /// we are to only use one head of the disk, then cylinder and track
            /// are the same thing. SEEK effectively moves the read/write head
            /// from the PCN (present cylinder number) to the NCN (new / desired
            /// cylinder number). Here, the words cylinder and track mean the same.
            ///
            /// SENSE_INTERRUPT_STATUS must immediately follow, due to SEEK not
            /// having result phase of its own in original design to lower interrupt
            /// signal.
            SEEK = 0x0F,
            /// Enables various special features. Don't need by default, probably :)
            /// E.g., Disable FIFO, disable polling
            CONFIGURE = 0x13,
            /// Similar to SEEK, except instead of providing NCN to move R/W head
            /// to, provide an RCN (relative cylinder number), to move n tracks
            /// out/in (specified by a direction bit 0/1 DIR) from PCN.
            RELATIVE_SEEK_IN = 0xCF,
            RELATIVE_SEEK_OUT = 0x8F,
            /// Debug reasons
            DUMP_REGISTERS = 0x0E,
            READ_ID = 0x4A, // 4 for double density mode
            /// Perpendicular Recording Mode classically is support for orienting
            /// the the magnetic bits vertically instead of horizontally, thereby
            /// being able to pack more data bits for the same area. Toggling
            /// this mode in theory determines whether or not to interface with a
            /// perpendicular recoding floppy drive. A 1 Mbps datarate is needed,
            /// and all other commands here will function the same regardless.
            PERP288_MODE = 0x12,
            /// Set LOCK bit to 0.
            ///
            /// If LOCK bit is 1, then software resets by DOR/DSR will have no
            /// effect any parameter values set by CONFIGURE. Hardware reset will
            /// override and reset parameters.
            UNLOCK_FIFO_FUNCTIONS = 0x14,
            /// Set LOCK bit to 1.
            LOCK_FIFO_FUNCTIONS = 0x94,
            /// Only purpose is really for problem reporting.
            PART_ID = 0x18,
            POWERDOWN_MODE = 0x17,
            OPTION = 0x33,
            SAVE = 0x2E,
            RESTORE = 0x4E,
            FORMAT_AND_WRITE = 0xAD,

            EXIT_STANDBY_MODE = 0x34,
            GOTO_STANDBY_MODE = 0x35,
            HARD_RESET = 0x36,
            READ_TRACK = 0x42,
            SEEK_AND_WRITE = 0x45,
            SEEK_AND_READ = 0x46,
            ALT_SEEK_AND_READ = 0x66,
            WRITE_DATA = 0xC5,
            READ_NORMAL_DEL_DATA = 0xC6,
            WRITE_DEL_DATA = 0xC9,
            READ_DEL_DATA = 0xCC,
            WRITE_NORMAL_DATA = 0xE5, // Nonstandard command used by BeOS
            READ_NORMAL_DATA = 0xE6,

            INVALID = 0x00,
        }
    }

    impl FloppyCommand {
        // Floppy commands are written one byte at a time to the DATA register. The
        // first byte specifies the issued command. The remaining bytes are used as
        // inputs for the command. AKA, number of parameters for particular command
        pub fn input_bytes_needed(&self) -> usize {
            // Add one to account for the command byte itself
            1 + match *self {
                Self::READ_DEL_DATA => 8,
                Self::WRITE_DATA => 8,
                Self::WRITE_DEL_DATA => 8,
                Self::READ_TRACK => 8,
                Self::VERIFY => 8,
                Self::VERSION => 0,
                Self::FORMAT_TRACK => 5,
                Self::FORMAT_DOUBLE_DENSITY_MODE => 5,
                Self::SCAN_EQUAL_ALL => 8,
                Self::SCAN_EQUAL => 8,
                Self::SCAN_LOW_OR_EQUAL => 8,
                Self::SCAN_HIGH_OR_EQUAL => 8,
                Self::RECALIBRATE => 1,
                Self::SENSE_INTERRUPT_STATUS => 0,
                Self::SPECIFY => 2,
                Self::SENSE_DRIVE_STATUS => 1,
                Self::DRIVE_SPECIFICATION_COMMAND => 6,
                Self::SEEK => 2,
                Self::CONFIGURE => 3,
                Self::RELATIVE_SEEK_IN => 2,
                Self::RELATIVE_SEEK_OUT => 2,
                Self::DUMP_REGISTERS => 0,
                Self::READ_ID => 1,
                Self::PERP288_MODE => 1,
                Self::UNLOCK_FIFO_FUNCTIONS => 0,
                Self::LOCK_FIFO_FUNCTIONS => 0,
                Self::PART_ID => 0,
                Self::POWERDOWN_MODE => 1,
                Self::OPTION => 1,
                Self::SAVE => 0,
                Self::RESTORE => 16,
                Self::FORMAT_AND_WRITE => 5,

                // Self::EXIT_STANDBY_MODE =>,
                // Self::GOTO_STANDBY_MODE =>,
                // Self::HARD_RESET =>,
                // Self::READ_TRACK =>,
                Self::SEEK_AND_WRITE => 8,
                Self::SEEK_AND_READ => 8,
                Self::ALT_SEEK_AND_READ => 8,
                Self::READ_NORMAL_DEL_DATA => 8,
                Self::WRITE_NORMAL_DATA => 8,
                Self::READ_NORMAL_DATA => 8,

                // Self::INVALID => ..,
                _ => 0,
            }
        }

        pub fn result_bytes_expected(&self) -> usize {
            match *self {
                Self::READ_DEL_DATA => 7,
                Self::WRITE_DATA => 7,
                Self::WRITE_DEL_DATA => 7,
                Self::READ_TRACK => 7,
                Self::VERIFY => 7,
                Self::VERSION => 1,
                Self::FORMAT_TRACK => 7,
                Self::FORMAT_DOUBLE_DENSITY_MODE => 7,
                Self::SCAN_EQUAL_ALL => 7,
                Self::SCAN_EQUAL => 7,
                Self::SCAN_LOW_OR_EQUAL => 7,
                Self::SCAN_HIGH_OR_EQUAL => 7,
                Self::RECALIBRATE => 2,
                Self::SENSE_INTERRUPT_STATUS => 2,
                Self::SPECIFY => 0,
                Self::SENSE_DRIVE_STATUS => 1,
                Self::DRIVE_SPECIFICATION_COMMAND => 0,
                Self::SEEK => 2, // TODO: 0?
                Self::CONFIGURE => 0,
                Self::RELATIVE_SEEK_IN => 2,  // TODO: 0?
                Self::RELATIVE_SEEK_OUT => 2, // TODO: 0?
                Self::DUMP_REGISTERS => 10,
                Self::READ_ID => 7,
                Self::PERP288_MODE => 0,
                Self::UNLOCK_FIFO_FUNCTIONS => 1,
                Self::LOCK_FIFO_FUNCTIONS => 1,
                Self::PART_ID => 1,
                Self::POWERDOWN_MODE => 1,
                Self::OPTION => 1,
                Self::SAVE => 16,
                Self::RESTORE => 0,
                Self::FORMAT_AND_WRITE => 7,

                // Self::EXIT_STANDBY_MODE =>,
                // Self::GOTO_STANDBY_MODE =>,
                // Self::HARD_RESET =>,
                Self::SEEK_AND_WRITE => 7,
                Self::SEEK_AND_READ => 7,
                Self::ALT_SEEK_AND_READ => 7,
                Self::READ_NORMAL_DEL_DATA => 7,
                Self::WRITE_NORMAL_DATA => 7,
                Self::READ_NORMAL_DATA => 7,

                Self::INVALID => 1,
                _ => 0,
            }
        }
    }

    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct SpecifyParam1 {
        #[bits(4)]
        pub head_unload_timer: u8,
        #[bits(4)]
        pub step_rate_time: u8,
    }

    #[derive(Inspect)]
    #[bitfield(u8)]
    pub struct SpecifyParam2 {
        #[bits(7)]
        pub head_load_timer: u8,
        pub dma_disabled: bool,
    }
}

const MAX_CMD_BUFFER_BYTES: usize = 64 * 1024;

#[derive(Debug)]
struct CommandBuffer {
    buffer: Arc<AlignedHeapMemory>,
}

#[derive(Debug)]
struct CommandBufferAccess {
    memory: GuestMemory,
}

impl CommandBuffer {
    fn new() -> Self {
        Self {
            buffer: Arc::new(AlignedHeapMemory::new(MAX_CMD_BUFFER_BYTES)),
        }
    }

    fn access(&self) -> CommandBufferAccess {
        CommandBufferAccess {
            memory: GuestMemory::new("floppy_buffer", self.buffer.clone()),
        }
    }
}

impl CommandBufferAccess {
    fn buffers(&self, offset: usize, len: usize, is_write: bool) -> RequestBuffers<'_> {
        // The buffer is 16 4KB pages long.
        static BUFFER_RANGE: Option<PagedRange<'_>> = PagedRange::new(
            0,
            MAX_CMD_BUFFER_BYTES,
            &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
        );

        RequestBuffers::new(
            &self.memory,
            BUFFER_RANGE.unwrap().subrange(offset, len),
            is_write,
        )
    }
}

struct Io(Pin<Box<dyn Send + Future<Output = Result<(), disk_backend::DiskError>>>>);

impl ChangeDeviceState for FloppyDiskController {
    fn start(&mut self) {}

    async fn stop(&mut self) {}

    async fn reset(&mut self) {
        self.reset(false);
    }
}

impl ChipsetDevice for FloppyDiskController {
    fn supports_pio(&mut self) -> Option<&mut dyn PortIoIntercept> {
        Some(self)
    }

    fn supports_poll_device(&mut self) -> Option<&mut dyn PollDevice> {
        Some(self)
    }
}

impl PollDevice for FloppyDiskController {
    fn poll_device(&mut self, cx: &mut Context<'_>) {
        if let Some(io) = self.io.as_mut() {
            if let Poll::Ready(result) = io.0.as_mut().poll(cx) {
                self.io = None;
                self.handle_io_completion(result);
            }
        }
        self.waker = Some(cx.waker().clone());
    }
}

impl PortIoIntercept for FloppyDiskController {
    fn io_read(&mut self, io_port: u16, data: &mut [u8]) -> IoResult {
        if data.len() != 1 {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        let offset = RegisterOffset(io_port % 0x10);
        data[0] = match offset {
            // This port is completely unsupported by latest floppy controllers.
            RegisterOffset::STATUS_A => 0xFF,
            // Also unsupported but return 0xFC to indicate no tape drives present.
            RegisterOffset::STATUS_B => 0xFC,
            // Do nothing. This port is obsolete.
            RegisterOffset::TAPE_DRIVE => 0xFF,
            RegisterOffset::DIGITAL_OUTPUT => self.state.digital_output.into(),
            RegisterOffset::MAIN_STATUS => {
                // Indicate data register is ready for reading/writing.
                // manifests as 0x80 (or something else with msb high)
                if self.state.digital_output.controller_enabled() {
                    self.state.main_status.into()
                } else {
                    0
                }
            }
            RegisterOffset::DATA => {
                // If there are more bytes left to read then read them out now.
                let active_drive = self.state.main_status.active_drives();
                let io_direction = self.state.main_status.data_direction();
                tracing::trace!(?active_drive, ?io_direction, "DATA io read state");

                if let Some(result) = self.state.output_bytes.pop() {
                    self.state.main_status.set_active_drives(0);
                    if self.state.output_bytes.is_empty() {
                        // Reverse direction, now ready to receive a new command
                        self.state.main_status = (self.state.main_status)
                            .with_non_dma_mode(false)
                            .with_busy(false)
                            .with_main_request(true)
                            .with_data_direction(protocol::DataDirection::Write.as_bool());
                    }
                    result
                } else {
                    INVALID_COMMAND_STATUS
                }
            }

            // This port returns a value in the high bit if a floppy is
            // missing or has changed since the last command.
            RegisterOffset::DIGITAL_INPUT => {
                // The bottom seven bits are tristated, and always read as
                // ones on a real floppy controller (in PC-AT mode).
                let val = protocol::DigitalInputRegister::new()
                    .with_tristated(0x7f)
                    .with_disk_change(
                        self.state.digital_output.motors_active() != 0
                            && (!self.state.internals.floppy_present
                                || self.state.internals.floppy_changed),
                    );

                val.into()
            }
            _ => return IoResult::Err(IoError::InvalidRegister),
        };

        tracing::trace!(?offset, ?data, "floppy pio read");

        IoResult::Ok
    }

    fn io_write(&mut self, io_port: u16, data: &[u8]) -> IoResult {
        if data.len() != 1 {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        let data = data[0];
        let offset = RegisterOffset(io_port % 0x10);
        tracing::trace!(?offset, ?data, "floppy pio write");
        match offset {
            RegisterOffset::STATUS_A | RegisterOffset::STATUS_B => {
                tracelimit::warn_ratelimited!(
                    ?data,
                    ?offset,
                    "write to read-only floppy status register"
                );
            }
            RegisterOffset::TAPE_DRIVE => {
                tracing::debug!(?data, "write to obsolete tape drive register");
            } // Do nothing. This port is obsolete.
            RegisterOffset::CONFIG_CONTROL => {
                // This controls the data transfer rate which is not
                // interesting to us. We will just ignore it.
                tracing::debug!(?data, "write to control register");
            }
            RegisterOffset::DATA_RATE => {
                const FLOPPY_DSR_DISK_RESET_MASK: u8 = 0x80; // DSR = Data-rate Select Register ("software" reset)

                if self.state.digital_output.controller_enabled()
                    && (data & FLOPPY_DSR_DISK_RESET_MASK) != 0
                {
                    self.reset(true);
                    self.state.sense_output = Some(SenseOutput::ResetCounter { count: 4 });
                    // Always trigger a reset interrupt, even though DMA will be disabled
                    self.raise_interrupt(true);
                    tracing::trace!("DSR wr: Un-resetting - asserting floppy interrupt");
                }
            }
            RegisterOffset::DIGITAL_OUTPUT => {
                let new_digital_output = protocol::DigitalOutputRegister::from(data);
                // state written to DOR contains NOT RESET, and controller enabled is
                // the positive logic relation. Negating controller enabled then gives
                // a high reset signal (which was originally transmitted as active low).
                // This means that a 0x00 byte disabled all motors and initiates a reset.
                // And then 0x04 byte turns off the reset flag. 0x08 will enable
                // interrupts, etc.
                let was_reset = !self.state.digital_output.controller_enabled();
                let is_reset = !new_digital_output.controller_enabled();
                let interrupts_were_enabled = self.state.digital_output.dma_enabled();
                let interrupts_enabled = new_digital_output.dma_enabled();
                self.state.digital_output = new_digital_output;

                if was_reset && !is_reset {
                    tracing::trace!("DOR wr: Un-resetting - asserting floppy interrupt");
                    self.state.sense_output = Some(SenseOutput::ResetCounter { count: 4 });
                    // Always trigger a reset interrupt, regardless of DMA configuration
                    self.raise_interrupt(true);
                } else if is_reset {
                    tracing::debug!("DOR wr: Software reset on fdc");
                    self.reset(true);
                } else {
                    if !interrupts_were_enabled && interrupts_enabled {
                        tracing::trace!("Re-enabling floppy interrupts");
                        self.raise_interrupt(false);
                    } else if interrupts_were_enabled && !interrupts_enabled {
                        tracing::trace!("Disabling floppy interrupts");
                        self.lower_interrupt();
                    }
                }
            }
            RegisterOffset::DATA => self.handle_data_write(data),
            _ => return IoResult::Err(IoError::InvalidRegister),
        }

        IoResult::Ok
    }
}

#[derive(Clone, Inspect)]
struct FloppyState {
    digital_output: protocol::DigitalOutputRegister,
    main_status: protocol::MainStatusRegister,

    // Used for command input
    #[inspect(bytes)]
    input_bytes: ArrayVec<u8, { protocol::FIFO_SIZE }>,

    // Used for output status/results
    #[inspect(bytes)]
    output_bytes: ArrayVec<u8, { protocol::FIFO_SIZE }>,

    // Needed for async Read/Write/Format
    #[inspect(skip)]
    pending_command: FloppyCommand,

    // scd: [u8; 2],
    head_unload_timer: u8,
    step_rate_time: u8,
    head_load_timer: u8,
    dma_disabled: bool,

    sense_output: Option<SenseOutput>,

    internals: FloppyStateInternals,

    // HACK: Our DSDT always reports that only 1 drive is available.
    // If this changes in the future proper drive selection and indexing will
    // need to be implemented here.
    position: ReadWriteHeadLocation,
    end_of_track: u8,

    // Needed for save/restore
    interrupt_level: bool,
}

#[derive(Clone, Inspect, Debug, Default, Copy)]
struct FloppyStateInternals {
    floppy_changed: bool,
    floppy_present: bool,
    media_write_protected: bool,
    io_pending: bool,

    num_bytes_rd: u32,
    num_bytes_wr: u32,
    sectors_per_track: u8,
    start_sector_pos: u32,
    sector_cache_start_logical: u32,
    sector_cache_end_logical: u32,
}

#[derive(Inspect, Debug, Clone, Copy)]
struct ReadWriteHeadLocation {
    cylinder: u8,
    head: u8,
    sector: u8,
}

impl ReadWriteHeadLocation {
    fn new() -> Self {
        Self {
            cylinder: 0,
            head: 0,
            sector: 0,
        }
    }

    /// Convert from a logical block address lba to a cylinder, head, sector chs indexing scheme
    /// Typical cylinder is 0-79, head is 0-1, sector is 1-18 all inclusive
    /// See https://wiki.osdev.org/Floppy_Disk_Controller#CHS
    fn chs_to_lba(&self, sectors_per_track: u8) -> u32 {
        (self.cylinder as u32 * 2 + self.head as u32) * sectors_per_track as u32
            + (self.sector as u32 - 1)
    }
}

#[derive(Clone, Inspect, Debug)]
#[inspect(external_tag)]
enum SenseOutput {
    /// BIOS expects the controller to interrupt four times, one for
    /// each possible drive connected to controller. Even though
    /// right now per DSDT, we only can have one drive
    ResetCounter { count: u8 },
    /// Effectively denotes interrupt cause, as part of drive state
    Value { value: protocol::StatusRegister0 },
}

impl FloppyState {
    fn new(sectors_per_track: u8, read_only: bool) -> Self {
        Self {
            digital_output: protocol::DigitalOutputRegister::new(),
            main_status: protocol::MainStatusRegister::new(),
            position: ReadWriteHeadLocation::new(),
            end_of_track: 0,

            input_bytes: ArrayVec::new(),
            output_bytes: ArrayVec::new(),

            head_unload_timer: 0,
            step_rate_time: 0,
            head_load_timer: 0,
            dma_disabled: false,
            sense_output: None,
            interrupt_level: false,

            internals: FloppyStateInternals::new(sectors_per_track, read_only),

            pending_command: FloppyCommand::INVALID,
        }
    }
}

impl FloppyStateInternals {
    fn new(sectors_per_track: u8, read_only: bool) -> Self {
        // TODO: this is bogus, but works fine given that we
        // don't support multi disks / hot add/remove
        let floppy_present = sectors_per_track != 0;

        Self {
            floppy_changed: false,
            floppy_present,
            media_write_protected: read_only,
            io_pending: false,

            num_bytes_rd: 0,
            num_bytes_wr: 0,
            sectors_per_track,
            start_sector_pos: 0,
            sector_cache_start_logical: 0,
            sector_cache_end_logical: 0,
        }
    }
}

#[derive(Inspect)]
struct FloppyRt {
    interrupt: LineInterrupt,
    pio_base: Box<dyn ControlPortIoIntercept>,
    pio_control: Box<dyn ControlPortIoIntercept>,
}

/// 82077AA Floppy disk controller
#[derive(InspectMut)]
pub struct FloppyDiskController {
    guest_memory: GuestMemory,

    // Runtime glue
    rt: FloppyRt,

    // Volatile state
    state: FloppyState,

    // backend
    disk_drive: DriveRibbon,

    #[inspect(skip)]
    dma: Box<dyn IsaDmaChannel>,

    #[inspect(skip)]
    command_buffer: CommandBuffer,

    #[inspect(with = "Option::is_some")]
    io: Option<Io>,
    #[inspect(skip)]
    waker: Option<Waker>,
}

/// Floppy disk drive configuration
#[derive(Inspect)]
#[inspect(external_tag)]
pub enum DriveRibbon {
    /// No drives connected
    None,
    /// Single drive connected
    Single(#[inspect(rename = "media")] Disk),
    // TODO: consider supporting multiple disks per controller?
    // real hardware can support up to 4 per controller...
}

/// Error returned by `DriveRibbon::from_vec` when too many drives are provided.
#[derive(Debug, Error)]
#[error("too many drives")]
pub struct TooManyDrives;

impl DriveRibbon {
    /// Create a new `DriveRibbon` from a vector of `Disk`s.
    pub fn from_vec(drives: Vec<Disk>) -> Result<Self, TooManyDrives> {
        match drives.len() {
            0 => Ok(Self::None),
            1 => Ok(Self::Single(drives.into_iter().next().unwrap())),
            _ => Err(TooManyDrives),
        }
    }
}

/// Errors returned by `FloppyDiskController::new`.
#[derive(Debug, Error)]
pub enum NewFloppyDiskControllerError {
    /// The disk is not a standard size.
    #[error("disk is non-standard size: {0} bytes")]
    NonStandardDisk(u64),
}

impl FloppyDiskController {
    /// Create a new floppy disk controller.
    pub fn new(
        guest_memory: GuestMemory,
        interrupt: LineInterrupt,
        register_pio: &mut dyn RegisterPortIoIntercept,
        pio_base_addr: u16,
        disk_drive: DriveRibbon,
        dma: Box<dyn IsaDmaChannel>,
    ) -> Result<Self, NewFloppyDiskControllerError> {
        let mut pio_base = register_pio.new_io_region("base", 6);
        let mut pio_control = register_pio.new_io_region("control", 1);

        pio_base.map(pio_base_addr);
        // take note of the 1-byte "hole" in this register space!
        // it is important, as it turns out that IDE controllers claim this port for themselves!
        pio_control.map(pio_base_addr + RegisterOffset::DIGITAL_INPUT.0);

        Ok(Self {
            guest_memory,
            rt: FloppyRt {
                interrupt,
                pio_base,
                pio_control,
            },
            state: FloppyState::new(
                {
                    match &disk_drive {
                        DriveRibbon::None => {
                            // TODO: this is bogus, but works fine given that we
                            // don't support multi disks / hot add/remove
                            0
                        }
                        DriveRibbon::Single(disk) => {
                            let file_size = disk.sector_count() * disk.sector_size() as u64;

                            let image_type = FloppyImageType::from_file_size(file_size)
                                .ok_or(NewFloppyDiskControllerError::NonStandardDisk(file_size))?;
                            image_type.sectors()
                        }
                    }
                },
                match &disk_drive {
                    DriveRibbon::Single(disk) => disk.is_read_only(),
                    DriveRibbon::None => false,
                },
            ),
            disk_drive,
            dma,
            command_buffer: CommandBuffer::new(),
            io: None,
            waker: None,
        })
    }

    /// Sets the asynchronous IO to be polled in `poll_device`.
    fn set_io<F, Fut>(&mut self, f: F)
    where
        F: FnOnce(Disk) -> Fut,
        Fut: 'static + Future<Output = Result<(), disk_backend::DiskError>> + Send,
    {
        let DriveRibbon::Single(disk) = &self.disk_drive else {
            panic!();
        };

        let fut = (f)(disk.clone());
        assert!(self.io.is_none());
        self.io = Some(Io(Box::pin(fut)));
        // Ensure poll_device gets called again.
        if let Some(waker) = self.waker.take() {
            waker.wake();
        }
    }

    fn handle_io_completion(&mut self, result: Result<(), disk_backend::DiskError>) {
        let command = self.state.pending_command;
        tracing::trace!(?command, ?result, "io completion");

        let result = match command {
            FloppyCommand::READ_NORMAL_DATA
            | FloppyCommand::READ_NORMAL_DEL_DATA
            | FloppyCommand::READ_DEL_DATA
            | FloppyCommand::SEEK_AND_READ
            | FloppyCommand::ALT_SEEK_AND_READ
            | FloppyCommand::READ_TRACK => match result {
                Ok(()) => self.read_complete(),
                Err(err) => Err(err),
            },
            FloppyCommand::WRITE_NORMAL_DATA
            | FloppyCommand::WRITE_DATA
            | FloppyCommand::WRITE_DEL_DATA
            | FloppyCommand::SEEK_AND_WRITE => match result {
                Ok(()) => self.write_complete(),
                Err(err) => Err(err),
            },
            FloppyCommand::FORMAT_TRACK | FloppyCommand::FORMAT_DOUBLE_DENSITY_MODE => match result
            {
                Ok(()) => self.write_zeros_complete(),
                Err(err) => Err(err),
            },
            _ => {
                tracelimit::error_ratelimited!(?command, "unexpected command!");
                return;
            }
        };

        if let Err(err) = result {
            let wo_error = matches!(err, disk_backend::DiskError::ReadOnly);
            self.set_output_status(true, wo_error, true);
        }

        self.state.pending_command = FloppyCommand::INVALID;
        self.complete_command(true);
    }

    // This function is called when we are done reading from a floppy drive image
    // asynchronously or if the data was already in the cache.
    fn read_complete(&mut self) -> Result<(), disk_backend::DiskError> {
        // TODO: we should be checking if the DMA channel is OK before firing
        // off a storage backend request...
        let buffer = match self.dma.request(IsaDmaDirection::Write) {
            Some(r) => r,
            None => {
                tracelimit::error_ratelimited!("request_dma for read failed");
                return Err(disk_backend::DiskError::Io(std::io::Error::new(
                    std::io::ErrorKind::Other,
                    "request_dma for read failed",
                )));
            }
        };

        let size = (buffer.size.div_ceil(STANDARD_FLOPPY_SECTOR_SIZE) * STANDARD_FLOPPY_SECTOR_SIZE)
            as u32;

        let buffer_ptr = &self.command_buffer.buffer[0..size as usize][..size as usize];

        let res = self
            .guest_memory
            .write_from_atomic(buffer.address, buffer_ptr);

        self.dma.complete();

        if let Err(err) = res {
            tracelimit::error_ratelimited!(
                error = &err as &dyn std::error::Error,
                "dma transfer failed"
            );
            return Err(disk_backend::DiskError::MemoryAccess(err.into()));
        }

        self.set_output_status(false, false, false);

        Ok(())
    }

    fn write_complete(&mut self) -> Result<(), disk_backend::DiskError> {
        self.set_output_status(false, false, false);
        Ok(())
    }

    fn write_zeros_complete(&mut self) -> Result<(), disk_backend::DiskError> {
        self.set_output_status(false, false, true);
        Ok(())
    }

    /// Return the offset of `addr` from the region's base address.
    ///
    /// Returns `None` if the provided `addr` is outside of the memory
    /// region, or the region is currently unmapped.
    pub fn offset_of(&self, addr: u16) -> Option<u16> {
        self.rt.pio_base.offset_of(addr).or_else(|| {
            self.rt
                .pio_control
                .offset_of(addr)
                .map(|_| RegisterOffset::DIGITAL_INPUT.0)
        })
    }

    fn raise_interrupt(&mut self, is_reset: bool) {
        if self.state.digital_output.dma_enabled() || is_reset {
            self.rt.interrupt.set_level(true);
            self.state.interrupt_level = true;
        }
    }

    fn lower_interrupt(&mut self) {
        self.rt.interrupt.set_level(false);
        self.state.interrupt_level = false;
    }

    // e.g., a reset in the DOR register (meaning bit 2..3 is low)
    // will deassert irq, reset all state info like cur cylinder,
    // but will preserve contents of DOR register itself
    fn reset(&mut self, preserve_digital_output: bool) {
        self.lower_interrupt();
        self.state = FloppyState {
            digital_output: if preserve_digital_output {
                self.state.digital_output
            } else {
                protocol::DigitalOutputRegister::new()
            },
            ..FloppyState::new(
                self.state.internals.sectors_per_track,
                self.state.internals.media_write_protected,
            )
        };

        // At the end of a reset we always do want to set RQM bit in MSR high,
        // so this is fine
        self.state.main_status = protocol::MainStatusRegister::new().with_main_request(true);

        tracing::trace!(
            preserve_digital_output,
            "controller reset - deasserting floppy interrupt"
        );
    }

    fn parse_input_for_readwrite(&mut self) {
        let input = protocol::InputRegister::from(self.state.input_bytes[1]);
        if input.drive_select() != 0 {
            tracelimit::warn_ratelimited!(
                "Drive selected as outside of what is supported in data read"
            );
        }

        let head = input.head();

        self.state.position.head = head;
        self.state.position.cylinder = self.state.input_bytes[2];
        if self.state.position.cylinder > FLOPPY_TOTAL_CYLINDERS {
            tracelimit::warn_ratelimited!(?self.state.position.cylinder, "Floppy seek to cylinder > 80");
        }
        self.state.position.sector = self.state.input_bytes[4];
        self.state.end_of_track = self.state.input_bytes[6];
        if self.state.input_bytes[5] != 2 || self.state.input_bytes[8] != 0xFF {
            tracelimit::warn_ratelimited!(?self.state.input_bytes, "non-standard floppy read command parameters for PC floppy format");
        }
    }

    fn get_sense_output(&mut self) -> &mut protocol::StatusRegister0 {
        match self.state.sense_output {
            Some(SenseOutput::Value { ref mut value }) => value,
            _ => {
                self.state.sense_output = Some(SenseOutput::Value {
                    value: protocol::StatusRegister0::new(),
                });

                match self.state.sense_output {
                    Some(SenseOutput::Value { ref mut value }) => value,
                    _ => panic!(),
                }
            }
        }
    }

    fn handle_sense_interrupt_status(&mut self) {
        match self.state.sense_output {
            Some(SenseOutput::ResetCounter { ref mut count }) => {
                // If the controller was just reset, it needs to send four
                // consecutive interrupts - one for each possible drive. The
                // bottom two bits of the ST0 (passed back as the first output
                // parameter) should increase from 0 to 3.
                if *count > 0 {
                    let out = protocol::StatusRegister0::from(4 - *count)
                        .with_invalid_command(true)
                        .with_abnormal_termination(true);
                    self.state.sense_output = if (*count - 1) == 0 {
                        None
                    } else {
                        Some(SenseOutput::ResetCounter { count: *count - 1 })
                    };
                    self.state.output_bytes.push(self.state.position.cylinder);
                    self.state.output_bytes.push(out.into());
                } else {
                    tracelimit::error_ratelimited!(
                        "SENSE_INTERRUPT_STATUS called with ResetCount stage 0. p lease fix me"
                    );
                    self.state.output_bytes.push(INVALID_COMMAND_STATUS);
                    self.state.output_bytes.push(INVALID_COMMAND_STATUS);
                }
            }
            Some(SenseOutput::Value { value }) => {
                self.state.output_bytes.push(self.state.position.cylinder);
                self.state.output_bytes.push(value.into());

                self.state.sense_output = None;
            }
            _ => {
                self.state.output_bytes.push(INVALID_COMMAND_STATUS);
                self.state.output_bytes.push(INVALID_COMMAND_STATUS);
            }
        }

        tracing::trace!("sense interrupt status cmd - deasserting floppy interrupt");

        self.lower_interrupt();

        self.state.main_status = (self.state.main_status)
            .with_data_direction(protocol::DataDirection::Write.as_bool())
            .with_non_dma_mode(false)
            .with_busy(false)
            .with_main_request(true);
    }

    fn handle_sense_drive_status(&mut self) {
        let input = protocol::InputRegister::from(self.state.input_bytes[1]);
        let drive: u8 = input.drive_select();
        if drive != 0 {
            tracelimit::warn_ratelimited!(
                ?drive,
                "Floppy drive number out of range from DSDT enforcement"
            );
        }

        let head: u8 = input.head();
        self.state.position.head = head;

        let output = protocol::StatusRegister3::new()
            .with_drive_select(drive)
            .with_head(head)
            .with_unused1(true)
            .with_track0(self.state.position.cylinder == 0)
            .with_unused2(true)
            .with_write_protected(self.state.internals.media_write_protected);

        self.state.output_bytes.push(output.into());
        self.get_sense_output().set_seek_end(true);
    }

    fn set_output_status(&mut self, rw_error: bool, wo_error: bool, end_seek: bool) {
        if !self.state.output_bytes.is_empty() {
            tracelimit::warn_ratelimited!("output_setup_long called with non-empty output_bytes");
        }
        self.state.output_bytes.push(0x2); // sector size code for standard size of 512 bytes
        self.state.output_bytes.push(1);

        self.state.output_bytes.push(self.state.position.head);
        self.state.output_bytes.push(self.state.position.cylinder);
        self.state.output_bytes.push(
            protocol::StatusRegister2::new()
                .with_missing_address(rw_error)
                .with_bad_cylinder(rw_error)
                .into(),
        );

        self.state.output_bytes.push(
            protocol::StatusRegister1::new()
                .with_no_data(rw_error)
                .with_missing_address(rw_error)
                .with_write_protected(wo_error)
                .into(),
        );

        self.state.output_bytes.push({
            let drive = 0; // again, we only support one drive, but could be changed in future
            let out = protocol::StatusRegister0::new()
                .with_drive_select(drive)
                .with_head(self.state.position.head)
                .with_abnormal_termination(rw_error || wo_error)
                .with_seek_end(end_seek);

            out.into()
        });
    }

    fn complete_command(&mut self, request_interrupt: bool) {
        let has_output = !self.state.output_bytes.is_empty();
        self.state.main_status.set_busy(has_output);
        self.state.main_status.set_non_dma_mode(false);

        let dma_type = if has_output {
            protocol::DataDirection::Read
        } else {
            protocol::DataDirection::Write
        };
        self.state
            .main_status
            .set_data_direction(dma_type.as_bool());
        self.state.main_status.set_main_request(true);

        if request_interrupt {
            self.raise_interrupt(false);
        }
    }

    // Output bytes should be in reverse order of the output in the 82077AA spec.
    // This is because the output bytes are popped off the end of the vector.
    // E.g., 7 byte output for READ_ID is ST0, ST1, ST2, C, H, R, N.
    // So output_bytes[0] is N, output_bytes[6] is ST0.
    fn handle_data_write(&mut self, data: u8) {
        // technically proper byte flow would pend on whether rqm bit for main request was enabled
        if !self.state.digital_output.controller_enabled() {
            // Do not handle commands if we're in a reset state.
            return;
        }

        self.state.input_bytes.push(data);
        let command = FloppyCommand(self.state.input_bytes[0]);

        // we want this to be below update of input buffer so that we
        // don't otherwise misreport what the command byte is
        // side effect is multiple trace lines of one command issue
        tracing::trace!(
            ?data,
            ?self.state.input_bytes,
            "floppy byte (cmd or param)"
        );

        self.handle_command(command);
    }

    fn handle_command(&mut self, command: FloppyCommand) {
        if !self.state.output_bytes.is_empty() {
            tracelimit::warn_ratelimited!(output_bytes = ?self.state.output_bytes, "Floppy data register write with bytes still pending");
        }
        self.state.output_bytes.clear();

        if self.state.input_bytes.len() < command.input_bytes_needed() {
            tracing::debug!(
                ?command,
                bytes_needed = ?command.input_bytes_needed(),
                bytes_received = ?self.state.input_bytes.len(),
                "floppy command missing (or waiting for) parameters"
            );

            // Command is still waiting for more bytes
            self.state.main_status.set_busy(true);
            return;
        }

        tracing::trace!(
            ?command,
            input_bytes = ?self.state.input_bytes,
            "executing floppy command"
        );

        // The controller appears to help along poorly written software
        // which does not correctly clear the INT signal by issuing a
        // sense-interrupt-status command. If we see a command come
        // through which is not a sense-interrupt-status and there
        // is already an interrupt pending, we will deassert the INT signal.
        if self.state.interrupt_level && command != FloppyCommand::SENSE_INTERRUPT_STATUS {
            tracing::trace!(?command, "Floppy interrupt level was high before command execution. Now de-asserting interrupt");
            self.lower_interrupt();
            self.state.main_status.set_active_drives(0);
        }

        let mut complete_command = true;
        let mut request_interrupt = false;

        match command {
            FloppyCommand::READ_NORMAL_DATA
            | FloppyCommand::READ_NORMAL_DEL_DATA
            | FloppyCommand::READ_DEL_DATA
            | FloppyCommand::SEEK_AND_READ
            | FloppyCommand::ALT_SEEK_AND_READ => {
                let success = self.handle_read();
                request_interrupt = !success;
                complete_command = !success;
            }
            FloppyCommand::WRITE_NORMAL_DATA
            | FloppyCommand::WRITE_DATA
            | FloppyCommand::WRITE_DEL_DATA
            | FloppyCommand::SEEK_AND_WRITE => {
                let success = self.handle_write();
                request_interrupt = !success;
                complete_command = !success;
            }
            FloppyCommand::READ_TRACK => {
                // Set the starting cylinder to 0
                self.state.input_bytes[2] = 0;
                let success = self.handle_read();
                request_interrupt = !success;
                complete_command = !success;
            }
            FloppyCommand::VERSION => {
                // magic number returned by 82077AA controllers
                self.state.output_bytes.push(0x90);
            }
            FloppyCommand::FORMAT_TRACK | FloppyCommand::FORMAT_DOUBLE_DENSITY_MODE => {
                let success = self.format();
                request_interrupt = !success;
                complete_command = !success;
            }
            FloppyCommand::SEEK => {
                self.handle_seek();
                request_interrupt = true;
            }
            FloppyCommand::RECALIBRATE => {
                self.handle_recalibrate();
                request_interrupt = true;
            }
            FloppyCommand::SENSE_INTERRUPT_STATUS => {
                self.handle_sense_interrupt_status();
            }
            FloppyCommand::SPECIFY => self.handle_specify(),
            FloppyCommand::SENSE_DRIVE_STATUS => self.handle_sense_drive_status(),
            FloppyCommand::DUMP_REGISTERS => self.handle_dump_registers(),
            FloppyCommand::READ_ID => {
                self.read_id();
                request_interrupt = true;
            }

            // These commands lock out or unlock software resets. Ignore the lock command but respond as if we care.
            // Pass back lock/unlock bit in bit 4.
            FloppyCommand::UNLOCK_FIFO_FUNCTIONS => {
                self.state.output_bytes.push(0);
            }
            FloppyCommand::LOCK_FIFO_FUNCTIONS => {
                self.state.output_bytes.push(0x10);
            }
            FloppyCommand::PART_ID => {
                self.state.output_bytes.push(0x01);
            }
            FloppyCommand::CONFIGURE | FloppyCommand::PERP288_MODE => {
                // Ignore the data bytes. No response, no interrupt.
                tracing::debug!(?command, "command ignored");
            }
            _ => {
                tracelimit::error_ratelimited!(?command, "unimplemented/unsupported command");
                self.state.output_bytes.push(INVALID_COMMAND_STATUS);
            }
        }

        // Finished processing command, so no longer need input
        self.state.input_bytes.clear();

        if !self.state.output_bytes.is_empty() {
            if self.state.output_bytes.len() != command.result_bytes_expected() {
                tracelimit::warn_ratelimited!(?command, output_bytes = ?self.state.output_bytes, "command output size doesn't match expected");
            } else {
                tracing::trace!(
                    ?command,
                    output_bytes = ?self.state.output_bytes,
                    "floppy command output"
                );
            }
        }

        self.state.pending_command = if complete_command {
            self.complete_command(request_interrupt);
            FloppyCommand::INVALID
        } else {
            command
        };

        tracing::trace!(
            main_status = ?self.state.main_status,
            digital_output = ?self.state.digital_output,
            sense_output = ?self.state.sense_output,
            dma_disabled = ?self.state.dma_disabled,
            cylinder = ?self.state.position.cylinder,
            head = ?self.state.position.head,
            sector = ?self.state.position.sector,
            interrupt_level = ?self.state.interrupt_level,
            "floppy state"
        );

        tracing::trace!("floppy command completed");
    }

    fn handle_read(&mut self) -> bool {
        // clear floppy changed flag
        self.state.internals.floppy_changed = false;

        // set interrupt cause
        self.get_sense_output().set_seek_end(true);

        // clear RQM
        self.state.main_status.set_main_request(false);

        // per section 4.2.1 of 82077AA spec, can operate with or
        // without DMA. We want DMA disabled currently because
        // DMA implementation is a stub. self.state.dma_disabled
        // is hard-coded to true for now via FloppyCommand::SPECIFY
        if self.state.dma_disabled {
            tracelimit::warn_ratelimited!("non-dma mode is not supported");
            self.state.main_status.set_non_dma_mode(true);
        }

        // mark drive as busy. this should? always set lsb
        let input = protocol::InputRegister::from(self.state.input_bytes[1]);
        let busy_drive = input.drive_select();
        self.state
            .main_status
            .set_active_drives(self.state.main_status.active_drives() | (1 << busy_drive));

        self.state.main_status.set_busy(true);

        self.parse_input_for_readwrite();

        let error = !self.read_data();
        if error {
            self.state.internals.io_pending = false;
            self.set_output_status(error, false, error);
        }
        !error
    }

    fn read_data(&mut self) -> bool {
        if !self.state.internals.floppy_present {
            tracelimit::error_ratelimited!("read attempted, but floppy not present");
            return false;
        }

        if self.state.position.sector == 0
            || self.state.position.sector > self.state.end_of_track
            || self.state.position.sector > self.state.internals.sectors_per_track
        {
            tracelimit::error_ratelimited!(
                position = ?self.state.position,
                end_of_track = self.state.end_of_track,
                sectors_per_track = self.state.internals.sectors_per_track,
                "invalid read position"
            );
            return false;
        }

        if self.state.position.cylinder > FLOPPY_TOTAL_CYLINDERS {
            tracelimit::error_ratelimited!(sector = ?self.state.position.sector, "bad sector in floppy read");
            return false;
        }

        self.state.internals.io_pending = true;
        let size_hint = self.dma.check_transfer_size() as usize;

        // now to read the next sector from the floppy
        let lba = (self.state.position).chs_to_lba(self.state.internals.sectors_per_track) as u64;

        let size = {
            let num = (size_hint.div_ceil(STANDARD_FLOPPY_SECTOR_SIZE)
                * STANDARD_FLOPPY_SECTOR_SIZE) as u32;
            if num < STANDARD_FLOPPY_SECTOR_SIZE as u32 {
                STANDARD_FLOPPY_SECTOR_SIZE as u32
            } else {
                num
            }
        };

        let command_buffer = self.command_buffer.access();

        tracing::trace!(lba, size, "starting disk read");
        self.set_io(|disk| async move {
            let buffers = command_buffer.buffers(0, size as usize, true);
            disk.read_vectored(&buffers, lba).await
        });

        true
    }

    fn handle_write(&mut self) -> bool {
        self.state.internals.floppy_changed = false;

        // set interrupt cause
        self.get_sense_output().set_seek_end(true);

        // clear RQM
        self.state.main_status.set_main_request(false);

        // per section 4.2.1 of 82077AA spec, can operate with or
        // without DMA. We want DMA disabled currently because
        // DMA implementation is a stub. self.state.dma_disabled
        // is hard-coded to true for now via FloppyCommand::SPECIFY
        if self.state.dma_disabled {
            tracelimit::warn_ratelimited!("non-dma mode is not supported");
            self.state.main_status.set_non_dma_mode(true);
        }

        // mark drive as busy. this should? always set lsb
        let input = protocol::InputRegister::from(self.state.input_bytes[1]);
        let busy_drive = input.drive_select();
        self.state
            .main_status
            .set_active_drives(self.state.main_status.active_drives() | (1 << busy_drive));

        self.state.main_status.set_busy(true);

        self.parse_input_for_readwrite();

        let wo_error = self.state.internals.media_write_protected;
        let error = if wo_error { true } else { !self.write_data() };

        if error {
            self.set_output_status(error, wo_error, error);
        }
        !error
    }

    fn write_data(&mut self) -> bool {
        if !self.state.internals.floppy_present {
            tracelimit::error_ratelimited!("write attempted, but floppy not present");
            return false;
        }

        if self.state.position.sector == 0
            || self.state.position.sector > self.state.end_of_track
            || self.state.position.sector > self.state.internals.sectors_per_track
        {
            tracelimit::error_ratelimited!(
                position = ?self.state.position,
                end_of_track = self.state.end_of_track,
                sectors_per_track = self.state.internals.sectors_per_track,
                "invalid write position"
            );
            return false;
        }

        let lba = (self.state.position).chs_to_lba(self.state.internals.sectors_per_track) as u64;
        let buffer = match self.dma.request(IsaDmaDirection::Read) {
            Some(r) => r,
            None => {
                tracelimit::error_ratelimited!("request_dma for write failed");
                return false;
            }
        };

        let size = buffer.size.div_ceil(STANDARD_FLOPPY_SECTOR_SIZE) * STANDARD_FLOPPY_SECTOR_SIZE;

        let command_buffer = self.command_buffer.access();

        let buffer_ptr = &self.command_buffer.buffer[0..size as usize][..size as usize];
        let r = self.guest_memory.read_to_atomic(buffer.address, buffer_ptr);

        self.dma.complete();

        if let Err(err) = r {
            tracelimit::error_ratelimited!(
                error = &err as &dyn std::error::Error,
                "dma transfer failed"
            );

            return false;
        }

        let DriveRibbon::Single(disk) = &self.disk_drive else {
            tracelimit::error_ratelimited!("No disk");
            return false;
        };

        if disk.is_read_only() {
            tracelimit::error_ratelimited!("Read only");
            return false;
        }

        self.set_io(|disk| async move {
            let buffers = command_buffer.buffers(0, size as usize, false);
            let result = disk.write_vectored(&buffers, lba, false).await;
            if let Err(err) = result {
                tracelimit::error_ratelimited!(
                    error = &err as &dyn std::error::Error,
                    "write failed"
                );
                return Err(err);
            }
            let result = disk.sync_cache().await;
            if let Err(err) = result {
                tracelimit::error_ratelimited!(
                    error = &err as &dyn std::error::Error,
                    "flush failed"
                );
                return Err(err);
            }

            result
        });

        true
    }

    fn write_zeros(&mut self) -> bool {
        let DriveRibbon::Single(disk) = &self.disk_drive else {
            tracelimit::error_ratelimited!("No disk");
            return false;
        };

        if disk.is_read_only() {
            tracelimit::error_ratelimited!("Read only");
            return false;
        }

        let buffer = match self.dma.request(IsaDmaDirection::Read) {
            Some(r) => r,
            None => {
                tracelimit::error_ratelimited!("request_dma for format failed");
                return false;
            }
        };

        let size = (buffer.size.div_ceil(STANDARD_FLOPPY_SECTOR_SIZE) * STANDARD_FLOPPY_SECTOR_SIZE)
            as u32;

        let command_buffer = self.command_buffer.access();

        let buffer_ptr = &self.command_buffer.buffer[0..size as usize][..size as usize];
        let r = self.guest_memory.read_to_atomic(buffer.address, buffer_ptr);

        self.dma.complete();

        if let Err(err) = r {
            tracelimit::error_ratelimited!(
                error = &err as &dyn std::error::Error,
                "dma transfer failed"
            );

            return false;
        }

        let Some(cylinder) = buffer_ptr.first() else {
            tracelimit::error_ratelimited!("failed to get(0)");
            return false;
        };

        let cylinder = cylinder.load(Ordering::Relaxed) as u64;

        let Some(head) = buffer_ptr.get(1) else {
            tracelimit::error_ratelimited!("failed to get(1)");
            return false;
        };

        let head = head.load(Ordering::Relaxed) as u64;

        let size = STANDARD_FLOPPY_SECTOR_SIZE * self.state.internals.sectors_per_track as usize;
        let buffers = command_buffer.buffers(0, size, false);

        let res = buffers.guest_memory().zero_range(&buffers.range());
        if let Err(err) = res {
            tracelimit::error_ratelimited!(
                error = &err as &dyn std::error::Error,
                "zero_range failed"
            );
            return false;
        }

        let lba = (cylinder * 2 + head) * self.state.internals.sectors_per_track as u64;

        tracing::trace!(?cylinder, ?head, ?lba, ?buffer_ptr, "Format: ");

        self.set_io(|disk| async move {
            let buffers = command_buffer.buffers(0, size, false);
            let result = disk.write_vectored(&buffers, lba, false).await;
            if let Err(err) = result {
                tracelimit::error_ratelimited!(
                    error = &err as &dyn std::error::Error,
                    "write failed"
                );
                return Err(err);
            }
            let result = disk.sync_cache().await;
            if let Err(err) = result {
                tracelimit::error_ratelimited!(
                    error = &err as &dyn std::error::Error,
                    "flush failed"
                );
                return Err(err);
            }
            result
        });

        true
    }

    fn format(&mut self) -> bool {
        let wo_err_occurred = self.state.internals.media_write_protected;
        let error = if wo_err_occurred {
            true
        } else {
            self.state.main_status.set_busy(true);
            !self.write_zeros()
        };

        if error {
            self.set_output_status(error, wo_err_occurred, true);
        }
        !error
    }

    fn handle_seek(&mut self) {
        self.state.internals.floppy_changed = false;

        self.state.position.sector = 0;

        let input = protocol::InputRegister::from(self.state.input_bytes[1]);
        self.state.position.head = input.head();

        self.state.position.cylinder = if self.state.input_bytes[2] >= FLOPPY_TOTAL_CYLINDERS {
            tracelimit::warn_ratelimited!(?self.state.position.cylinder, "Floppy seek to cylinder > 80");
            0
        } else {
            self.state.input_bytes[2] // this is the new cylinder number
        };

        self.recalibrate();
    }

    fn handle_recalibrate(&mut self) {
        self.state.position.cylinder = 0;
        self.recalibrate();
    }

    fn recalibrate(&mut self) {
        if let Some(SenseOutput::ResetCounter { .. }) = self.state.sense_output {
            self.state.sense_output = None;
        }

        // We don't have any hardware, e.g., read/write head, that needs
        // to move, so just immediately signal completion. These commands
        // can interrupt a reset sequence, most can't.
        // Also, both arms cause reset stage set to 0 implicitly
        let head = self.state.position.head;
        self.get_sense_output().set_seek_end(true);
        self.get_sense_output().set_head(head);

        // Set the appropriate disk to active
        let input = protocol::InputRegister::from(self.state.input_bytes[1]);
        let busy_drive = input.drive_select();
        self.state
            .main_status
            .set_active_drives(self.state.main_status.active_drives() | (1 << busy_drive));
        if busy_drive > 0 {
            tracelimit::warn_ratelimited!(
                ?busy_drive,
                "Floppy seek to drive outside of what is supported"
            );
        }
    }

    fn handle_specify(&mut self) {
        let param1 = protocol::SpecifyParam1::from(self.state.input_bytes[1]);
        let param2 = protocol::SpecifyParam2::from(self.state.input_bytes[2]);

        self.state.head_unload_timer = param1.head_unload_timer();
        self.state.step_rate_time = param1.step_rate_time();
        self.state.head_load_timer = param2.head_load_timer();
        self.state.dma_disabled = param2.dma_disabled();
    }

    fn handle_dump_registers(&mut self) {
        self.state.output_bytes.push(self.state.position.cylinder);
        self.state.output_bytes.push(0); // drive 1 cur cylinder (PCN), drive disabled -> 0
        self.state.output_bytes.push(0); // drive 2 PCN. drive disabled, so default 0
        self.state.output_bytes.push(0); // drive 3 PCN. drive disabled, so default 0

        self.state.output_bytes.push(
            protocol::SpecifyParam1::new()
                .with_head_unload_timer(self.state.head_unload_timer)
                .with_step_rate_time(self.state.step_rate_time)
                .into(),
        );
        self.state.output_bytes.push(
            protocol::SpecifyParam2::new()
                .with_head_load_timer(self.state.head_load_timer)
                .with_dma_disabled(self.state.dma_disabled)
                .into(),
        );

        // TODO: Sector per track should not be 0, if disk is inserted / formatted
        self.state.output_bytes.push(0); // SC (Number of Sectors, per track). aka EOT (end of track/number of final sector)
        self.state.output_bytes.push(0); // various flags dealing with PERP288
        self.state.output_bytes.push(0); // configure info (never set?)

        // TODO: write precomp enum and setting
        self.state.output_bytes.push(0); // write precomp start track no. (never set?)
    }

    fn read_id(&mut self) {
        // handle input
        let input = protocol::InputRegister::from(self.state.input_bytes[1]);
        self.state.position.head = input.head();

        // handle output
        self.set_output_status(false, false, false);
        let head = self.state.position.head;
        self.get_sense_output().set_head(head);
    }
}

mod save_restore {
    use super::*;
    use vmcore::save_restore::RestoreError;
    use vmcore::save_restore::SaveError;
    use vmcore::save_restore::SaveRestore;

    mod state {
        use mesh::payload::Protobuf;
        use vmcore::save_restore::SavedStateRoot;

        #[derive(Protobuf, SavedStateRoot)]
        #[mesh(package = "chipset.floppy")]
        pub struct SavedState {
            #[mesh(1)]
            pub digital_output: u8,
            #[mesh(2)]
            pub main_status: u8,
            #[mesh(3)]
            pub input_bytes: Vec<u8>,
            #[mesh(4)]
            pub output_bytes: Vec<u8>,
            #[mesh(5)]
            pub head_unload_timer: u8,
            #[mesh(6)]
            pub step_rate_time: u8,
            #[mesh(7)]
            pub head_load_timer: u8,
            #[mesh(8)]
            pub dma_disabled: bool,
            #[mesh(9)]
            pub interrupt_output: Option<SavedInterruptOutput>,
            #[mesh(10)]
            pub interrupt_level: bool,

            #[mesh(11)]
            pub end_of_track: u8,
            // Below fields are for future-proofing:
            // Unused today as we only support one drive.
            #[mesh(12)]
            pub drive: u8,
            // Only cylinder of the first floppy is used today.
            #[mesh(13)]
            pub floppies: [SavedFloppyState; 1],
            #[mesh(14)]
            pub pending_command: u8,
        }

        #[derive(Protobuf)]
        #[mesh(package = "chipset.floppy")]
        pub struct SavedFloppyState {
            #[mesh(1)]
            pub cylinder: u8,
            #[mesh(2)]
            pub head: u8,
            #[mesh(3)]
            pub sector: u8,
            #[mesh(4)]
            pub internals: SavedFloppyStateInternals,
        }

        #[derive(Protobuf)]
        #[mesh(package = "chipset.floppy")]
        pub enum SavedInterruptOutput {
            #[mesh(1)]
            ResetCounter {
                #[mesh(1)]
                count: u8,
            },
            #[mesh(2)]
            Value {
                #[mesh(1)]
                value: u8,
            },
        }

        impl From<SavedInterruptOutput> for super::SenseOutput {
            fn from(value: SavedInterruptOutput) -> Self {
                match value {
                    SavedInterruptOutput::ResetCounter { count } => {
                        super::SenseOutput::ResetCounter { count }
                    }
                    SavedInterruptOutput::Value { value } => super::SenseOutput::Value {
                        value: super::protocol::StatusRegister0::from(value),
                    },
                }
            }
        }

        impl From<super::SenseOutput> for SavedInterruptOutput {
            fn from(value: super::SenseOutput) -> Self {
                match value {
                    super::SenseOutput::ResetCounter { count } => {
                        SavedInterruptOutput::ResetCounter { count }
                    }
                    super::SenseOutput::Value { value } => SavedInterruptOutput::Value {
                        value: u8::from(value),
                    },
                }
            }
        }

        #[derive(Protobuf, Clone, Copy)]
        #[mesh(package = "chipset.floppy")]
        pub struct SavedFloppyStateInternals {
            #[mesh(1)]
            floppy_changed: bool,
            #[mesh(2)]
            floppy_present: bool,
            #[mesh(3)]
            media_write_protected: bool,
            #[mesh(4)]
            io_pending: bool,

            #[mesh(5)]
            num_bytes_rd: u32,
            #[mesh(6)]
            num_bytes_wr: u32,
            #[mesh(7)]
            sectors_per_track: u8,
            #[mesh(8)]
            start_sector_pos: u32,
            #[mesh(9)]
            sector_cache_start_logical: u32,
            #[mesh(10)]
            sector_cache_end_logical: u32,
        }

        impl From<super::FloppyStateInternals> for SavedFloppyStateInternals {
            fn from(value: super::FloppyStateInternals) -> Self {
                let super::FloppyStateInternals {
                    floppy_changed,
                    floppy_present,
                    media_write_protected,
                    io_pending,
                    num_bytes_rd,
                    num_bytes_wr,
                    sectors_per_track,
                    start_sector_pos,
                    sector_cache_start_logical,
                    sector_cache_end_logical,
                } = value;

                Self {
                    floppy_changed,
                    floppy_present,
                    media_write_protected,
                    io_pending,
                    num_bytes_rd,
                    num_bytes_wr,
                    sectors_per_track,
                    start_sector_pos,
                    sector_cache_start_logical,
                    sector_cache_end_logical,
                }
            }
        }

        impl From<SavedFloppyStateInternals> for super::FloppyStateInternals {
            fn from(value: SavedFloppyStateInternals) -> Self {
                let SavedFloppyStateInternals {
                    floppy_changed,
                    floppy_present,
                    media_write_protected,
                    io_pending,
                    num_bytes_rd,
                    num_bytes_wr,
                    sectors_per_track,
                    start_sector_pos,
                    sector_cache_start_logical,
                    sector_cache_end_logical,
                } = value;

                Self {
                    floppy_changed,
                    floppy_present,
                    media_write_protected,
                    io_pending,
                    num_bytes_rd,
                    num_bytes_wr,
                    sectors_per_track,
                    start_sector_pos,
                    sector_cache_start_logical,
                    sector_cache_end_logical,
                }
            }
        }
    }

    impl SaveRestore for FloppyDiskController {
        type SavedState = state::SavedState;

        fn save(&mut self) -> Result<Self::SavedState, SaveError> {
            let FloppyState {
                digital_output,
                main_status,
                ref input_bytes,
                ref output_bytes,
                head_unload_timer,
                step_rate_time,
                head_load_timer,
                dma_disabled,
                sense_output: ref interrupt_output,
                interrupt_level,
                position,
                internals,
                end_of_track,
                pending_command,
            } = self.state;

            let saved_state = state::SavedState {
                digital_output: digital_output.into(),
                main_status: main_status.into(),
                input_bytes: input_bytes.to_vec(),
                output_bytes: output_bytes.to_vec(),
                head_unload_timer,
                step_rate_time,
                head_load_timer,
                dma_disabled,
                interrupt_output: interrupt_output.clone().map(|x| x.into()),
                interrupt_level,
                end_of_track,
                drive: 0,
                floppies: [state::SavedFloppyState {
                    cylinder: position.cylinder,
                    head: position.head,
                    sector: position.sector,
                    internals: internals.into(),
                }],
                pending_command: pending_command.0,
            };

            Ok(saved_state)
        }

        fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
            let state::SavedState {
                digital_output,
                main_status,
                input_bytes,
                output_bytes,
                head_unload_timer,
                step_rate_time,
                head_load_timer,
                dma_disabled,
                interrupt_output,
                interrupt_level,
                end_of_track,
                drive: _,
                floppies,
                pending_command,
            } = state;

            self.state = FloppyState {
                digital_output: digital_output.into(),
                main_status: main_status.into(),
                input_bytes: input_bytes.as_slice().try_into().map_err(
                    |e: arrayvec::CapacityError| RestoreError::InvalidSavedState(e.into()),
                )?,
                output_bytes: output_bytes.as_slice().try_into().map_err(
                    |e: arrayvec::CapacityError| RestoreError::InvalidSavedState(e.into()),
                )?,
                head_unload_timer,
                step_rate_time,
                head_load_timer,
                dma_disabled,
                sense_output: interrupt_output.map(|x| x.into()),
                interrupt_level,
                end_of_track,
                position: ReadWriteHeadLocation {
                    cylinder: floppies[0].cylinder,
                    head: floppies[0].head,
                    sector: floppies[0].sector,
                },
                internals: floppies[0].internals.into(),
                pending_command: FloppyCommand(pending_command),
            };

            self.rt.interrupt.set_level(interrupt_level);

            Ok(())
        }
    }
}