firmware_uefi/service/nvram/spec_services/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! An implementation of UEFI spec 8.2 - Variable Services
//!
//! This implementation is a direct implementation / transcription of the UEFI
//! spec, and does not contain any Hyper-V specific features* (i.e: injecting
//! various nvram vars related to secure boot, boot order, etc...).
//!
//! *that isn't _entirely_ true just yet, as there is one bit of code
//! that enforce read-only access to certain Hyper-V specific vars, but if the
//! need arises, those code paths can be refactored.
pub use nvram_services_ext::NvramServicesExt;
use bitfield_struct::bitfield;
use guid::Guid;
use inspect::Inspect;
use mesh::payload::Protobuf;
use std::borrow::Cow;
use thiserror::Error;
use ucs2::Ucs2LeSlice;
use ucs2::Ucs2ParseError;
use uefi_nvram_specvars::signature_list;
use uefi_nvram_specvars::signature_list::ParseSignatureLists;
use uefi_nvram_storage::InspectableNvramStorage;
use uefi_nvram_storage::NextVariable;
use uefi_nvram_storage::NvramStorageError;
use uefi_specs::uefi::common::EfiStatus;
use uefi_specs::uefi::nvram::EfiVariableAttributes;
use uefi_specs::uefi::time::EFI_TIME;
use zerocopy::FromBytes;
use zerocopy::FromZeroes;
#[cfg(feature = "fuzzing")]
pub mod auth_var_crypto;
#[cfg(not(feature = "fuzzing"))]
mod auth_var_crypto;
mod nvram_services_ext;
#[derive(Debug, Error)]
pub enum NvramError {
#[error("storage backend error")]
NvramStorage(#[source] NvramStorageError),
#[error("variable name cannot be null/None")]
NameNull,
#[error("variable data of non-zero len cannot be null")]
DataNull,
#[error("variable name validation failed")]
NameValidation(#[from] Ucs2ParseError),
#[error("cannot pass empty string to SetVariable")]
NameEmpty,
#[error("attributes include non-spec values")]
AttributeNonSpec,
#[error("invalid runtime access")]
InvalidRuntimeAccess,
#[error("invalid attr: hardware error records are not supported")]
UnsupportedHardwareErrorRecord,
#[error("invalid attr: enhanced authenticated access unsupported")]
UnsupportedEnhancedAuthAccess,
#[error("invalid attr: volatile variables unsupported")]
UnsupportedVolatile,
#[error("attribute mismatch with existing variable")]
AttributeMismatch,
#[error("authenticated variable error")]
AuthError(#[from] AuthError),
#[error("updating SetupMode variable")]
UpdateSetupMode(#[source] NvramStorageError),
#[error("parsing signature list")]
SignatureList(#[from] signature_list::ParseError),
}
#[derive(Debug, Error)]
pub enum AuthError {
#[error("data too short (cannot extract EFI_VARIABLE_AUTHENTICATION_2 header)")]
NotEnoughHdrData,
#[error("data too short (cannot extract WIN_CERTIFICATE_UEFI_GUID cert)")]
NotEnoughCertData,
#[error("invalid WIN_CERTIFICATE Header")]
InvalidWinCertHeader,
#[error("invalid WIN_CERTIFICATE_UEFI_GUID Header")]
InvalidWinCertUefiGuidHeader,
#[error("incorrect cert type (must be WIN_CERTIFICATE_UEFI_GUID)")]
IncorrectCertType,
#[error("incorrect timestamp values")]
IncorrectTimestamp,
#[error("new timestamp is not later than current timestamp")]
OldTimestamp,
#[error("current implementation cannot authenticate specified var")]
UnsupportedAuthVar,
#[error("could not verify auth var")]
CryptoError,
#[cfg(feature = "auth-var-verify-crypto")]
#[error("error in crypto payload format")]
CryptoFormat(#[from] auth_var_crypto::FormatError),
}
/// `SetVariable` validation is incredibly tricky, since there are a _lot_ of
/// subtle logic branches that are predicated on the presence (or lack thereof)
/// of various attribute bits.
///
/// In order to make the implementation a bit easier to understand and maintain,
/// we switch from using the full-featured `EfiVariableAttributes` bitflags type
/// to a restricted subset of these flags described by `SupportedAttrs` part-way
/// through SetVariable.
#[bitfield(u32)]
#[derive(PartialEq)]
pub struct SupportedAttrs {
pub non_volatile: bool,
pub bootservice_access: bool,
pub runtime_access: bool,
pub hardware_error_record: bool,
_reserved: bool,
pub time_based_authenticated_write_access: bool,
#[bits(26)]
_reserved2: u32,
}
impl SupportedAttrs {
pub fn contains_unsupported_bits(&self) -> bool {
u32::from(*self)
& !u32::from(
Self::new()
.with_non_volatile(true)
.with_bootservice_access(true)
.with_runtime_access(true)
.with_hardware_error_record(true)
.with_time_based_authenticated_write_access(true),
)
!= 0
}
}
/// Helper struct to collect various properties of a parsed authenticated var
#[cfg_attr(not(feature = "auth-var-verify-crypto"), allow(dead_code))]
#[derive(Debug, Clone, Copy)]
pub struct ParsedAuthVar<'a> {
pub name: &'a Ucs2LeSlice,
pub vendor: Guid,
pub attr: u32,
pub timestamp: EFI_TIME,
pub pkcs7_data: &'a [u8],
pub var_data: &'a [u8],
}
/// Unlike a typical result type, NvramErrors contain _both_ a payload _and_ an
/// error code. Depending on the error code, an optional `NvramError` might be
/// included as well, which provides more context.
///
/// Notably, **this result types cannot be propagated via the `?` operator!**
#[derive(Debug)]
pub struct NvramResult<T>(pub T, pub EfiStatus, pub Option<NvramError>);
impl<T> NvramResult<T> {
pub fn is_success(&self) -> bool {
matches!(self.1, EfiStatus::SUCCESS)
}
}
impl<T> std::fmt::Display for NvramResult<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.2 {
Some(_) => write!(f, "{:?} (with error context)", self.1),
None => write!(f, "{:?}", self.1),
}
}
}
impl<T> std::error::Error for NvramResult<T>
where
T: std::fmt::Debug,
{
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
self.2
.as_ref()
.map(|s| s as &(dyn std::error::Error + 'static))
}
}
#[derive(Clone, Copy, Debug, Protobuf, Inspect)]
enum RuntimeState {
/// Implementation-specific state, whereby certain read-only and
/// authenticated variable checks are bypassed.
///
/// Transitions into `Boot` once all pre-boot nvram variables have been
/// successfully injected.
PreBoot,
/// UEFI firmware hasn't called `ExitBootServices`
Boot,
/// UEFI firmware has called `ExitBootServices`
Runtime,
}
impl RuntimeState {
fn is_pre_boot(&self) -> bool {
matches!(&self, RuntimeState::PreBoot)
}
fn is_boot(&self) -> bool {
matches!(&self, RuntimeState::Boot)
}
fn is_runtime(&self) -> bool {
matches!(&self, RuntimeState::Runtime)
}
}
/// An implementation of UEFI spec 8.2 - Variable Services
///
/// This API tries to match the API defined by the UEFI spec 1:1, hence why it
/// doesn't look very "Rust-y".
///
/// If you need to interact with `NvramServices` outside the context of the UEFI
/// device itself, consider importing the [`NvramServicesExt`] trait. This trait
/// provides various helper methods that make it easier to get/set nvram
/// variables, without worrying about the nitty-gritty details of UCS-2 string
/// encoding, pointer sizes/nullness, etc...
///
/// Instead of returning a typical `Result` type, these methods all return a
/// tuple of `(Option<T>, EfiStatus, Option<NvramError>)`, where the `EfiStatus`
/// field should be unconditionally returned to the guest, while the
/// `NvramError` type provides additional context as to what error occurred in
/// OpenVMM (i.e: for logging purposes).
#[derive(Debug, Inspect)]
pub struct NvramSpecServices<S: InspectableNvramStorage> {
storage: S,
runtime_state: RuntimeState,
}
impl<S: InspectableNvramStorage> NvramSpecServices<S> {
/// Construct a new NvramServices instance from an existing storage backend.
pub fn new(storage: S) -> NvramSpecServices<S> {
NvramSpecServices {
storage,
runtime_state: RuntimeState::PreBoot,
}
}
/// Check if the nvram store is empty.
pub async fn is_empty(&mut self) -> Result<bool, NvramStorageError> {
self.storage.is_empty().await
}
/// Update "SetupMode" based on the current value of "PK"
///
/// From UEFI spec section 32.3
///
/// While no Platform Key is enrolled, the SetupMode variable shall be equal
/// to 1. While SetupMode == 1, the platform firmware shall not require
/// authentication in order to modify the Platform Key, Key Enrollment Key,
/// OsRecoveryOrder, OsRecovery####, and image security databases.
///
/// After the Platform Key is enrolled, the SetupMode variable shall be
/// equal to 0. While SetupMode == 0, the platform firmware shall require
/// authentication in order to modify the Platform Key, Key Enrollment Key,
/// OsRecoveryOrder, OsRecovery####, and image security databases.
pub async fn update_setup_mode(&mut self) -> Result<(), NvramStorageError> {
use uefi_specs::uefi::nvram::vars::PK;
use uefi_specs::uefi::nvram::vars::SETUP_MODE;
let (pk_vendor, pk_name) = PK();
let (setup_mode_vendor, setup_mode_name) = SETUP_MODE();
let attr = EfiVariableAttributes::DEFAULT_ATTRIBUTES;
let timestamp = EFI_TIME::new_zeroed();
let data = match self.storage.get_variable(pk_name, pk_vendor).await? {
Some(_) => [0x00],
None => [0x01],
};
self.storage
.set_variable(
setup_mode_name,
setup_mode_vendor,
attr.into(),
data.to_vec(),
timestamp,
)
.await?;
Ok(())
}
/// Nvram behavior changes after the guest signals that ExitBootServices has
/// been called (e.g: hiding variables that are only accessible at
/// boot-time).
pub fn exit_boot_services(&mut self) {
assert!(self.runtime_state.is_boot());
tracing::trace!("NVRAM has entered runtime mode");
self.runtime_state = RuntimeState::Runtime;
}
/// Called when the VM resets to return to the preboot state.
pub fn reset(&mut self) {
self.runtime_state = RuntimeState::PreBoot;
}
/// Called after injecting any pre-boot nvram vars, transitioning the nvram
/// store to start accepting calls from guest UEFI.
pub fn prepare_for_boot(&mut self) {
assert!(self.runtime_state.is_pre_boot());
tracing::trace!("NVRAM has entered boot mode");
self.runtime_state = RuntimeState::Boot;
}
async fn get_setup_mode(&mut self) -> Result<bool, NvramStorageError> {
use uefi_specs::uefi::nvram::vars::SETUP_MODE;
let (setup_mode_vendor, setup_mode_name) = SETUP_MODE();
let in_setup_mode = match self
.storage
.get_variable(setup_mode_name, setup_mode_vendor)
.await?
{
None => false,
Some((_, data, _)) => data.first().map(|b| *b == 0x01).unwrap_or(false),
};
Ok(in_setup_mode)
}
/// Get a variable identified by `name` + `vendor`, returning the variable's
/// attributes and data.
///
/// - `in_name`
/// - (In) Variable name (a null-terminated UTF-16 string, or `None` if
/// the guest passed a `nullptr`)
/// - `in_vendor`
/// - (In) Variable vendor guid
/// - `out_attr`
/// - (Out) Variable's attributes
/// - _Note:_ According to the UEFI spec: `attr` will be populated on
/// both EFI_SUCCESS _and_ when EFI_BUFFER_TOO_SMALL is returned.
/// - `in_out_data_size`
/// - (In) Size of available data buffer (provided by guest)
/// - (Out) Size of data to be written into buffer
/// - _Note:_ If `data_is_null` is `true`, and `in_out_data_size` is set
/// to `0`, `in_out_data_size` will be updated with the size required
/// to store the variable.
/// - `data_is_null`
/// - (In) bool indicating if guest passed `nullptr` as the data addr
pub async fn uefi_get_variable(
&mut self,
name: Option<&[u8]>,
in_vendor: Guid,
out_attr: &mut u32,
in_out_data_size: &mut u32,
data_is_null: bool,
) -> NvramResult<Option<Vec<u8>>> {
let name = match name {
Some(name) => {
Ucs2LeSlice::from_slice_with_nul(name).map_err(NvramError::NameValidation)
}
None => Err(NvramError::NameNull),
};
let name = match name {
Ok(name) => name,
Err(e) => return NvramResult(None, EfiStatus::INVALID_PARAMETER, Some(e)),
};
tracing::trace!(
?in_vendor,
?name,
in_out_data_size,
data_is_null,
"Get NVRAM variable",
);
let (attr, data) = match self.get_variable_inner(name, in_vendor).await {
Ok(Some((attr, data, _))) => (attr, data),
Ok(None) => return NvramResult(None, EfiStatus::NOT_FOUND, None),
Err((status, err)) => return NvramResult(None, status, err),
};
if self.runtime_state.is_runtime() && !attr.runtime_access() {
// From UEFI spec section 8.2:
//
// If EFI_BOOT_SERVICES.ExitBootServices() has already been
// executed, data variables without the EFI_VARIABLE_RUNTIME_ACCESS
// attribute set will not be visible to GetVariable() and will
// return an EFI_NOT_FOUND error.
return NvramResult(
None,
EfiStatus::NOT_FOUND,
Some(NvramError::InvalidRuntimeAccess),
);
}
*out_attr = attr.into();
match (*in_out_data_size, data_is_null) {
(0, true) => *in_out_data_size = data.len() as u32,
(_, true) => return NvramResult(None, EfiStatus::INVALID_PARAMETER, None),
(_, false) => {
let guest_buf_len = *in_out_data_size as usize;
*in_out_data_size = data.len() as u32;
if guest_buf_len < data.len() {
return NvramResult(None, EfiStatus::BUFFER_TOO_SMALL, None);
}
}
}
NvramResult(Some(data), EfiStatus::SUCCESS, None)
}
async fn get_variable_inner(
&mut self,
name: &Ucs2LeSlice,
vendor: Guid,
) -> Result<Option<(SupportedAttrs, Vec<u8>, EFI_TIME)>, (EfiStatus, Option<NvramError>)> {
match self.storage.get_variable(name, vendor).await {
Ok(None) => Ok(None),
Ok(Some((attr, data, timestamp))) => {
let attr = SupportedAttrs::from(attr);
assert!(
!attr.contains_unsupported_bits(),
"underlying storage should only ever contain valid attributes"
);
Ok(Some((attr, data, timestamp)))
}
Err(e) => {
let status = match &e {
NvramStorageError::Deserialize => EfiStatus::DEVICE_ERROR,
_ => panic!("unexpected NvramStorageError from get_variable"),
};
Err((status, Some(NvramError::NvramStorage(e))))
}
}
}
/// Set a variable identified by `name` + `vendor` with the specified `attr`
/// and `data`
///
/// - `name`
/// - (In) Variable name (a null-terminated UTF-16 string, or `None` if
/// the guest passed a `nullptr`)
/// - _Note:_ `name` must contain one or more character.
/// - `in_vendor`
/// - (In) Variable vendor guid
/// - `in_attr`
/// - (In) Variable's attributes
/// - `in_data_size`
/// - (In) Length of data to be written
/// - If len in `0`, and the EFI_VARIABLE_APPEND_WRITE,
/// EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS,
/// EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS, or
/// EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS are not set,
/// the variable will be deleted.
/// - `data`
/// - (In) Variable data (or `None` if the guest passed a `nullptr`)
pub async fn uefi_set_variable(
&mut self,
name: Option<&[u8]>,
in_vendor: Guid,
in_attr: u32,
in_data_size: u32,
data: Option<Vec<u8>>,
) -> NvramResult<()> {
let name = match name {
Some(name) => {
Ucs2LeSlice::from_slice_with_nul(name).map_err(NvramError::NameValidation)
}
None => Err(NvramError::NameNull),
};
let name = match name {
Ok(name) => name,
Err(e) => return NvramResult((), EfiStatus::INVALID_PARAMETER, Some(e)),
};
if name.as_bytes() == [0, 0] {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::NameEmpty),
);
}
tracing::trace!(
%in_vendor,
%name,
in_attr,
in_data_size,
data = if data.is_some() { "Some([..])" } else { "None" },
"Set NVRAM variable",
);
// Perform some basic attribute validation
let attr = {
// Validate that set bits correspond to valid attribute flags
let attr = EfiVariableAttributes::from(in_attr);
if attr.contains_unsupported_bits() {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::AttributeNonSpec),
);
}
// From UEFI spec section 8.2:
//
// Runtime access to a data variable implies boot service access.
// Attributes that have EFI_VARIABLE_RUNTIME_ACCESS set must also
// have EFI_VARIABLE_BOOTSERVICE_ACCESS set. The caller is
// responsible for following this rule.
if attr.runtime_access() && !attr.bootservice_access() {
return NvramResult((), EfiStatus::INVALID_PARAMETER, None);
}
// From UEFI spec section 8.2:
//
// If both the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS
// and the EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute are
// set in a SetVariable() call, then the firmware must return
// EFI_INVALID_PARAMETER.
if attr.time_based_authenticated_write_access() && attr.enhanced_authenticated_access()
{
return NvramResult((), EfiStatus::INVALID_PARAMETER, None);
}
attr
};
// Report EFI_UNSUPPORTED for any attributes our implementation doesn't
// support
{
if attr.hardware_error_record() {
return NvramResult(
(),
EfiStatus::UNSUPPORTED,
Some(NvramError::UnsupportedHardwareErrorRecord),
);
}
if attr.enhanced_authenticated_access() {
return NvramResult(
(),
EfiStatus::UNSUPPORTED,
Some(NvramError::UnsupportedEnhancedAuthAccess),
);
}
// From UEFI spec section 8.2:
//
// EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is deprecated and should
// not be used. Platforms should return EFI_UNSUPPORTED if a caller
// to SetVariable() specifies this attribute.
if attr.authenticated_write_access() {
return NvramResult((), EfiStatus::UNSUPPORTED, None);
}
}
// From UEFI spec section 32.3, Figure 32-4
//
// There are various nvram variables that determine what part of secure
// boot flow we are in. These get used later on in validation, but we'll
// go ahead and fetch them here...
//
// TODO: implement logic around AuditMode and DeployedMode
let in_setup_mode = match self.get_setup_mode().await {
Ok(val) => val,
Err(err) => {
return NvramResult(
(),
EfiStatus::DEVICE_ERROR,
Some(NvramError::NvramStorage(err)),
)
}
};
// From UEFI spec section 8.2:
//
// Once ExitBootServices() is performed, only variables that have
// EFI_VARIABLE_RUNTIME_ACCESS and EFI_VARIABLE_NON_VOLATILE set can be
// set with SetVariable(). Variables that have runtime access but that
// are not nonvolatile are readonly data variables once
// ExitBootServices() is performed.
if self.runtime_state.is_runtime() {
// At first glance, this seems like a pretty straightforward
// conditional, but unfortunately, we need to consider the
// interaction with this other clause:
//
// From UEFI spec section 8.2:
//
// If a preexisting variable is rewritten with no access
// attributes specified, the variable will be deleted.
//
// As such, if neither access attribute is set, we punt this runtime
// access check to the implementation of the delete operation,
// whereby it will make sure the variable being deleted has the
// correct attributes.
let missing_access_attrs = !(attr.runtime_access() || attr.bootservice_access());
if !missing_access_attrs {
if !attr.runtime_access() || !attr.non_volatile() {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::InvalidRuntimeAccess),
);
}
}
}
// Check if variable being set is read-only from the Guest
//
// Note: these checks are bypassed during pre-boot in order to set the
// vars' initial values.
if !self.runtime_state.is_pre_boot() {
use uefi_specs::hyperv::nvram::vars as hyperv_vars;
use uefi_specs::uefi::nvram::vars as spec_vars;
// In true UEFI spec fashion, there are always exceptions...
enum Exception {
None,
SetupMode,
// TODO: add more exception variants as new RO vars are added
}
#[rustfmt::skip]
let read_only_vars = [
// UEFI Spec - Table 3-1 Global Variables
//
// NOTE: Does not implement all of the read-only
// variables defined by the UEFI spec in section 3.3
(spec_vars::SECURE_BOOT(), Exception::None),
(spec_vars::SETUP_MODE(), Exception::None),
(spec_vars::KEK(), Exception::SetupMode),
(spec_vars::PK(), Exception::SetupMode),
(spec_vars::DBDEFAULT(), Exception::None),
// Hyper-V also uses some read-only vars that aren't specified
// in the UEFI spec
(hyperv_vars::SECURE_BOOT_ENABLE(), Exception::None),
(hyperv_vars::CURRENT_POLICY(), Exception::None),
(hyperv_vars::OS_LOADER_INDICATIONS_SUPPORTED(), Exception::None),
];
let is_readonly = read_only_vars.into_iter().any(|(v, exception)| {
let skip_check = match exception {
Exception::None => false,
Exception::SetupMode => in_setup_mode,
};
// NOTE: The HCL and worker process implementations perform a
// case-insensitive comparisons here. A better fix would've
// been to make all comparisons case _sensitive_, rather than
// introducing bits of case _insensitivity_ around the nvram
// implementation. Hindsight is 20-20.
//
// In OpenVMM, we don't consider nvram variable names as strings
// with semantic meaning. Instead, they are akin to a
// bag-of-bytes that _just so happen_ to have a convenient debug
// representation when printed out at a UCS-2 string.
//
// Case-sensitive comparisons has been confirmed correct with
// the UEFI team, and as such, it may be worthwhile to backport
// this change into the C++ implementation as well.
if !skip_check {
v == (in_vendor, name)
} else {
false
}
});
if is_readonly {
return NvramResult((), EfiStatus::WRITE_PROTECTED, None);
}
}
// The behavior of various operations changes depending on whether or
// not the specified variable already exists, so go ahead and try to
// fetch it
let existing_var = match self.get_variable_inner(name, in_vendor).await {
Ok(v) => v,
Err((status, err)) => return NvramResult((), status, err),
};
let (in_data_size, data, timestamp) = {
if !attr.time_based_authenticated_write_access() {
// nothing fancy here, just some regular 'ol data...
let timestamp = EFI_TIME::new_zeroed();
(in_data_size, data, timestamp)
} else {
// the payload includes an authenticated variable header
//
// UEFI spec 8.2.2 - Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor
use uefi_specs::uefi::nvram::EFI_VARIABLE_AUTHENTICATION_2;
use uefi_specs::uefi::signing::EFI_CERT_TYPE_PKCS7_GUID;
use uefi_specs::uefi::signing::WIN_CERTIFICATE_UEFI_GUID;
use uefi_specs::uefi::signing::WIN_CERT_TYPE_EFI_GUID;
tracing::trace!(
"variable is attempting to use TIME_BASED_AUTHENTICATED_WRITE_ACCESS"
);
// data cannot be null
let data = match data {
Some(data) => data,
None => {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::DataNull),
)
}
};
// extract EFI_VARIABLE_AUTHENTICATION_2 header
let auth_hdr =
match EFI_VARIABLE_AUTHENTICATION_2::read_from_prefix(data.as_slice()) {
Some(hdr) => hdr,
None => {
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::NotEnoughHdrData)),
)
}
};
let timestamp = auth_hdr.timestamp;
let auth_info = auth_hdr.auth_info;
// split off the variable-length WIN_CERTIFICATE_UEFI_GUID cert
// data from the variable length payload
let (pkcs7_data, var_data) = {
let auth_info_offset = size_of_val(&auth_hdr.timestamp);
// use the header's length value to extract the
// WIN_CERTIFICATE_UEFI_GUID struct + variable length payload
if data[auth_info_offset..].len() < (auth_info.header.length as usize) {
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::NotEnoughCertData)),
);
}
let (auth_info_hdr_and_cert, var_data) =
data[auth_info_offset..].split_at(auth_info.header.length as usize);
// ...and then strip off the WIN_CERTIFICATE_UEFI_GUID
// struct from the variable length payload
let pkcs7_data = match auth_info_hdr_and_cert
.get(size_of::<WIN_CERTIFICATE_UEFI_GUID>()..)
{
Some(data) => data,
None => {
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::NotEnoughCertData)),
);
}
};
(pkcs7_data, var_data)
};
// validate WIN_CERTIFICATE header construction
if auth_info.header.revision != 0x0200 {
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::InvalidWinCertHeader)),
);
}
// validate correct cert type is being used
if auth_info.header.certificate_type != WIN_CERT_TYPE_EFI_GUID
|| auth_info.cert_type != EFI_CERT_TYPE_PKCS7_GUID
{
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::IncorrectCertType)),
);
}
// validate timestamp according to spec
if timestamp.pad1 != 0
|| timestamp.nanosecond != 0
|| timestamp.timezone.0 != 0
|| u8::from(timestamp.daylight) != 0
|| timestamp.pad2 != 0
{
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::IncorrectTimestamp)),
);
}
// if a variable already exists, make sure the timestamp is
// newer (or in the case of Append, clamp the timestamp to the
// existing timestamp)
let orig_timestamp = timestamp; // original value must be used when performing variable auth
let timestamp = {
let mut timestamp = timestamp;
if let Some((_, _, existing_timestamp)) = existing_var {
let is_newer = (
timestamp.year,
timestamp.month,
timestamp.day,
timestamp.hour,
timestamp.minute,
timestamp.second,
timestamp.nanosecond,
)
.cmp(&(
existing_timestamp.year,
existing_timestamp.month,
existing_timestamp.day,
existing_timestamp.hour,
existing_timestamp.minute,
existing_timestamp.second,
existing_timestamp.nanosecond,
))
.is_gt();
if !is_newer {
if !attr.append_write() {
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::OldTimestamp)),
);
} else {
timestamp = existing_timestamp
}
}
}
timestamp
};
// If PK is present, then we need to authenticate the payload with KEK or PK.
let pk_var = {
let (pk_vendor, pk_name) = uefi_specs::uefi::nvram::vars::PK();
match self.get_variable_inner(pk_name, pk_vendor).await {
Ok(v) => v,
Err((status, err)) => return NvramResult((), status, err),
}
};
// From UEFI spec section 8.2.2:
//
// If the variable SetupMode==1, and the variable is a secure
// boot policy variable, then the firmware implementation shall
// consider the checks in the following steps 4 and 5 to have
// passed, and proceed with updating the variable value as
// outlined below.
//
// (our implementation extends this condition to include
// "is nvram currently in the pre-boot state")
let bypass_auth = self.runtime_state.is_pre_boot()
|| (in_setup_mode
&& uefi_specs::uefi::nvram::is_secure_boot_policy_var(in_vendor, name));
if pk_var.is_some() && !bypass_auth {
tracing::trace!("pk exists, attempting to actually authenticate var...");
let parsed_auth_var = ParsedAuthVar {
name,
vendor: in_vendor,
attr: attr.into(),
timestamp: orig_timestamp,
pkcs7_data,
var_data,
};
// The UEFI spec has several special-cased authenticated vars.
// At the moment, our implementation only supports a handful of these cases.
enum AuthVarKind {
Db,
PkKek,
Unsupported,
}
let var_kind = match (in_vendor, name) {
v if v == uefi_specs::uefi::nvram::vars::DB() => AuthVarKind::Db,
v if v == uefi_specs::uefi::nvram::vars::DBX() => AuthVarKind::Db,
v if v == uefi_specs::uefi::nvram::vars::PK() => AuthVarKind::PkKek,
v if v == uefi_specs::uefi::nvram::vars::KEK() => AuthVarKind::PkKek,
// TODO: add support for:
// - dbr, dbt
// - OsRecoveryOrder, OsRecovery####
// - private auth vars
_ => AuthVarKind::Unsupported,
};
let auth_res = match var_kind {
AuthVarKind::Db => {
// UEFI Spec - 8.2.2 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor
//
// If the variable is the “db”, “dbt”, “dbr”, or “dbx” variable mentioned
// in step 3, verify that the signer’s certificate chains to a certificate
// in the Key Exchange Key database (or that the signature was made with
// the current Platform Key).
match self
.authenticate_var(
uefi_specs::uefi::nvram::vars::KEK(),
parsed_auth_var,
)
.await
{
Ok(res) => Ok(res),
// If authentication with KEK fails, then try PK authentication.
Err(_) => {
self.authenticate_var(
uefi_specs::uefi::nvram::vars::PK(),
parsed_auth_var,
)
.await
}
}
}
AuthVarKind::PkKek => {
// UEFI Spec - 8.2.2 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor
//
// If the variable is the global PK variable or the global KEK variable,
// verify that the signature has been made with the current Platform Key.
self.authenticate_var(
uefi_specs::uefi::nvram::vars::PK(),
parsed_auth_var,
)
.await
}
AuthVarKind::Unsupported => {
// TODO: the HCL treats this case the same as the `PkKek` case, but that
// seems wrong...
return NvramResult(
(),
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::UnsupportedAuthVar)),
);
}
};
if let Err((status, err)) = auth_res {
return NvramResult((), status, err);
}
}
// now that everything has been validated, we can strip off the
// auth header and go on to actually performing the requested
// operation of the remaining payload.
let total_auth_hdr_len =
size_of_val(&auth_hdr.timestamp) + (auth_info.header.length as usize);
(
in_data_size - total_auth_hdr_len as u32,
Some({
let mut data = data;
data.drain(..total_auth_hdr_len);
data
}),
timestamp,
)
}
};
// SetVariable is pretty weird, as it overloads a single method to
// perform a whole bunch of different variable operations, such as
// removing, updating, appending, and setting variables.
//
// Determining which specific operation is being requested requires
// navigating a hodgepodge of various rules and indicators, such as the
// length of the data passed in, what attributes are set, etc...
#[derive(Debug)]
enum VariableOperation {
Set,
Append,
Delete,
}
let op = {
let is_doing_append = attr.append_write();
let is_doing_delete = {
// From UEFI spec section 8.2:
//
// If a preexisting variable is rewritten with no access attributes
// specified, the variable will be deleted.
let missing_access_attrs = !(attr.runtime_access() || attr.bootservice_access());
// From UEFI spec section 8.2:
//
// Unless the EFI_VARIABLE_APPEND_WRITE,
// EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS, or
// EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute is set (see
// below), using SetVariable() with a DataSize of zero will cause the
// entire variable to be deleted
let zero_data_size = in_data_size == 0 && !is_doing_append;
missing_access_attrs || zero_data_size
};
// append takes precedence over delete/set
if is_doing_append {
VariableOperation::Append
} else if is_doing_delete {
VariableOperation::Delete
} else {
VariableOperation::Set
}
};
tracing::trace!(?op, "SetVariable is performing");
// normalize attr bits (i.e: strip off APPEND_WRITE indicator)
let attr = attr.with_append_write(false);
// Drop down to using `SupportedAttrs` instead of
// `EfiVariableAttributes` to make things easier to follow.
let attr = SupportedAttrs::from(u32::from(attr));
let res = match op {
VariableOperation::Append => {
// This implementation only supports non-volatile variables.
// Volatile variables should be handled within UEFI itself.
if !attr.non_volatile() {
return NvramResult(
(),
EfiStatus::UNSUPPORTED,
Some(NvramError::UnsupportedVolatile),
);
}
// data *might* get modified in the case that it contains an
// EFI_SIGNATURE_LIST, and duplicates need to get filtered out
// (hence the use of `mut`)
let mut data = match (in_data_size, data) {
// Appending with zero data will silently do nothing,
// regardless if a variable already exists
(0, _) => return NvramResult((), EfiStatus::SUCCESS, None),
// If data len is non-zero, data cannot be nullptr
(_, None) => {
return NvramResult((), EfiStatus::SUCCESS, Some(NvramError::DataNull))
}
(_, Some(data)) => data,
};
if let Some((existing_attr, existing_data, _)) = existing_var {
// attempting to fetch a boot-time variable at runtime
if self.runtime_state.is_runtime() && !existing_attr.runtime_access() {
// ...will fail, since the variable "doesn't exist" at runtime
return NvramResult(
(),
EfiStatus::NOT_FOUND,
Some(NvramError::InvalidRuntimeAccess),
);
}
// From UEFI spec section 8.2:
//
// If a preexisting variable is rewritten with different
// attributes, SetVariable() shall not modify the variable
// and shall return EFI_INVALID_PARAMETER.
if attr != existing_attr {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::AttributeMismatch),
);
}
// From UEFI spec section 8.2:
//
// For variables with the GUID EFI_IMAGE_SECURITY_DATABASE_GUID
// (i.e. where the data buffer is formatted as EFI_SIGNATURE_LIST),
// the driver shall not perform an append of EFI_SIGNATURE_DATA
// values that are already part of the existing variable value.
//
// Note: This situation is not considered an error, and shall in itself
// not cause a status code other than EFI_SUCCESS to be returned or the
// timestamp associated with the variable not to be updated.
if attr.time_based_authenticated_write_access() {
use signature_list::SignatureDataPayload;
let existing_signatures = ParseSignatureLists::new(&existing_data)
.collect_signature_set()
.expect("existing var must contain valid list of EFI_SIGNATURE_LIST");
// NOTE: the Hyper-V implementation filter signature lists in-place. While
// that *would* be more efficient, it also makes the code a _lot_ harder to
// understand, so in OpenVMM, lets keep things simple and just allocate a new
// buffer for the filtered signatures.
let filtered_signatures = ParseSignatureLists::new(&data)
.collect_signature_lists(|header, sig| {
let sig: &[u8] = match sig {
SignatureDataPayload::X509(buf) => buf,
SignatureDataPayload::Sha256(buf) => buf,
};
!existing_signatures.contains(&(header, Cow::Borrowed(sig)))
});
// it *is* an error if the provided signature list is malformed
let filtered_signatures = match filtered_signatures {
Ok(sigs) => sigs,
Err(e) => {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::SignatureList(e)),
)
}
};
let mut new_data = Vec::new();
for list in filtered_signatures {
list.extend_as_spec_signature_list(&mut new_data);
}
// update data to point at the new signature list we just created
data = new_data;
}
}
// All validation checks have passed, so perform the operation
match self
.storage
.append_variable(name, in_vendor, data.to_vec(), timestamp)
.await
{
Ok(true) => NvramResult((), EfiStatus::SUCCESS, None),
Ok(false) => NvramResult((), EfiStatus::NOT_FOUND, None),
Err(e) => {
let status = match &e {
NvramStorageError::Commit(_) => EfiStatus::DEVICE_ERROR,
NvramStorageError::OutOfSpace => EfiStatus::OUT_OF_RESOURCES,
NvramStorageError::VariableNameTooLong => EfiStatus::INVALID_PARAMETER,
NvramStorageError::VariableDataTooLong => EfiStatus::INVALID_PARAMETER,
_ => {
panic!("unexpected NvramStorageError from append_variable")
}
};
NvramResult((), status, Some(NvramError::NvramStorage(e)))
}
}
}
VariableOperation::Delete => {
if let Some((existing_attr, _, _)) = existing_var {
// attempting to delete an existing boot-time variable at runtime
if self.runtime_state.is_runtime() && !existing_attr.runtime_access() {
// ...will fail, since the variable "doesn't exist" at runtime
return NvramResult(
(),
EfiStatus::NOT_FOUND,
Some(NvramError::InvalidRuntimeAccess),
);
}
}
// All validation checks have passed, so perform the operation
match self.storage.remove_variable(name, in_vendor).await {
Ok(true) => NvramResult((), EfiStatus::SUCCESS, None),
Ok(false) => NvramResult((), EfiStatus::NOT_FOUND, None),
Err(e) => {
let status = match &e {
NvramStorageError::Commit(_) => EfiStatus::DEVICE_ERROR,
NvramStorageError::OutOfSpace => EfiStatus::OUT_OF_RESOURCES,
NvramStorageError::VariableNameTooLong => EfiStatus::INVALID_PARAMETER,
NvramStorageError::VariableDataTooLong => EfiStatus::INVALID_PARAMETER,
_ => {
panic!("unexpected NvramStorageError from remove_variable")
}
};
NvramResult((), status, Some(NvramError::NvramStorage(e)))
}
}
}
VariableOperation::Set => {
// This implementation only supports non-volatile variables.
// Volatile variables should be handled within UEFI itself.
//
// The exceptions are variables that are controlled/injected by the loader.
// This includes secure boot enablement (volatile by specification),
// as well as the private Hyper-V OsLoaderIndications and
// OsLoaderIndicationsSupported variables, which are volatile variables
// that are injected via the non-volatile store. The dbDefault variable
// is also an exception.
if !attr.non_volatile() {
use uefi_specs::hyperv::nvram::vars as hyperv_vars;
use uefi_specs::uefi::nvram::vars::DBDEFAULT;
use uefi_specs::uefi::nvram::vars::SECURE_BOOT;
let allowed_volatile = [
hyperv_vars::OS_LOADER_INDICATIONS(),
hyperv_vars::OS_LOADER_INDICATIONS_SUPPORTED(),
DBDEFAULT(),
SECURE_BOOT(),
];
let is_allowed = allowed_volatile.into_iter().any(|v| v == (in_vendor, name));
if !is_allowed {
return NvramResult(
(),
EfiStatus::UNSUPPORTED,
Some(NvramError::UnsupportedVolatile),
);
}
}
// if we are doing a variable set, then data cannot be a nullptr
let data = match data {
Some(data) => data,
None => {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::DataNull),
)
}
};
if let Some((existing_attr, _, _)) = existing_var {
// attempting to overwrite an existing boot-time variable
if self.runtime_state.is_runtime() && !existing_attr.runtime_access() {
// This is a weird case, since calling GetVariable would
// actually return `EFI_NOT_FOUND` (as the variable is
// "hidden" at runtime), implying that it should be
// _fine_ to set the variable.
//
// It seems that unless we have some kind of "runtime
// shadow variable" support, it's possible to use
// `SetVariable` as a way to check if boot-time
// variables _actually_ exist...
//
// The UEFI folks seem to think this gap is _fine_, as
// it doesn't give access to protected data - just the
// fact that that the boot time var exists.
//
// So... while this isn't a _great_ solution, it matches
// all existing implementations (both within and outside
// Hyper-V)
return NvramResult(
(),
EfiStatus::WRITE_PROTECTED,
Some(NvramError::InvalidRuntimeAccess),
);
}
// From UEFI spec section 8.2:
//
// If a preexisting variable is rewritten with different
// attributes, SetVariable() shall not modify the
// variable and shall return EFI_INVALID_PARAMETER.
if attr != existing_attr {
return NvramResult(
(),
EfiStatus::INVALID_PARAMETER,
Some(NvramError::AttributeMismatch),
);
}
}
// All validation checks have passed, so perform the operation
match self
.storage
.set_variable(name, in_vendor, attr.into(), data.to_vec(), timestamp)
.await
{
Ok(_) => NvramResult((), EfiStatus::SUCCESS, None),
Err(e) => {
let status = match &e {
NvramStorageError::Commit(_) => EfiStatus::DEVICE_ERROR,
NvramStorageError::OutOfSpace => EfiStatus::OUT_OF_RESOURCES,
NvramStorageError::VariableNameTooLong => EfiStatus::INVALID_PARAMETER,
NvramStorageError::VariableDataTooLong => EfiStatus::INVALID_PARAMETER,
_ => panic!("unexpected NvramStorageError from set_variable"),
};
NvramResult((), status, Some(NvramError::NvramStorage(e)))
}
}
}
};
// If we modified the PK variable, we need to update the SetupMode
// variable accordingly.
if res.is_success() && (in_vendor, name) == uefi_specs::uefi::nvram::vars::PK() {
if let Err(e) = self.update_setup_mode().await {
return NvramResult(
(),
EfiStatus::DEVICE_ERROR,
Some(NvramError::UpdateSetupMode(e)),
);
}
}
res
}
#[cfg(not(feature = "auth-var-verify-crypto"))]
async fn authenticate_var(
&mut self,
// NOTE: Due to a compiler limitation with async fn, 'static bound was removed here
// https://github.com/rust-lang/rust/issues/63033#issuecomment-521234696
_: (Guid, &Ucs2LeSlice),
_: ParsedAuthVar<'_>,
) -> Result<(), (EfiStatus, Option<NvramError>)> {
tracing::warn!("compiled without 'auth-var-verify-crypto' - unconditionally failing auth var validation!");
Err((EfiStatus::SECURITY_VIOLATION, None))
}
/// Authenticate the given variable against the signatures stored in the
/// specified EFI_SIGNATURE_LIST
#[cfg(feature = "auth-var-verify-crypto")]
async fn authenticate_var(
&mut self,
// NOTE: Due to a compiler limitation with async fn, 'static bound was removed here
// https://github.com/rust-lang/rust/issues/63033#issuecomment-521234696
(key_var_name, key_var_vendor): (Guid, &Ucs2LeSlice),
auth_var: ParsedAuthVar<'_>,
) -> Result<(), (EfiStatus, Option<NvramError>)> {
let signature_lists = match self
.get_variable_inner(key_var_vendor, key_var_name)
.await?
{
Some((_, data, _)) => data,
None => return Err((EfiStatus::SECURITY_VIOLATION, None)),
};
// the nitty-gritty of how authentication works is best left to a separate module...
match auth_var_crypto::authenticate_variable(&signature_lists, auth_var) {
Ok(true) => Ok(()),
Ok(false) => Err((
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::CryptoError)),
)),
Err(e) if e.key_var_error() => {
panic!("existing signature list must contain valid data: {}", e)
}
// all other errors are due to malformed auth_var data
Err(e) => Err((
EfiStatus::SECURITY_VIOLATION,
Some(NvramError::AuthError(AuthError::CryptoFormat(e))),
)),
}
}
/// Return the variable immediately following the variable identified by
/// `name` + `vendor` `key`.
///
/// If `name` is an empty string, the first variable is returned.
///
/// - `name`
/// - (In) Variable name (a null-terminated UTF-16 string, or `None` if
/// the guest passed a `nullptr`)
/// - `in_out_name_size`
/// - (In) Length of the provided `name`
/// - (Out) Length of the next variable name
/// - _Note:_ If there is insufficient space in the name buffer to store
/// the next variable, `in_out_name_size` will be updated with the
/// size required to store the variable.
/// - `vendor`
/// - (In) Variable vendor guid
pub async fn uefi_get_next_variable(
&mut self,
in_out_name_size: &mut u32,
name: Option<&[u8]>,
vendor: Guid,
) -> NvramResult<Option<(Vec<u8>, Guid)>> {
let name = match name {
Some(name) => {
Ucs2LeSlice::from_slice_with_nul(name).map_err(NvramError::NameValidation)
}
None => Err(NvramError::NameNull),
};
let name = match name {
Ok(name) => name,
Err(e) => return NvramResult(None, EfiStatus::INVALID_PARAMETER, Some(e)),
};
tracing::trace!(?vendor, ?name, in_out_name_size, "Next NVRAM variable",);
// As per UEFI spec: if an empty null-terminated string is passed to
// GetNextVariable, the first variable should be returned
let mut res = if name.as_bytes() == [0, 0] {
self.storage.next_variable(None).await
} else {
self.storage.next_variable(Some((name, vendor))).await
};
loop {
match res {
Ok(NextVariable::EndOfList) => {
return NvramResult(None, EfiStatus::NOT_FOUND, None)
}
Ok(NextVariable::InvalidKey) => {
return NvramResult(None, EfiStatus::INVALID_PARAMETER, None);
}
Ok(NextVariable::Exists { name, vendor, attr }) => {
let attr = EfiVariableAttributes::from(attr);
assert!(
!attr.contains_unsupported_bits(),
"underlying storage should only ever contain valid attributes"
);
// From UEFI spec section 8.2:
//
// Once EFI_BOOT_SERVICES.ExitBootServices() is performed,
// variables that are only visible during boot services will
// no longer be returned.
//
// i.e: continue iterating
if self.runtime_state.is_runtime() && !attr.runtime_access() {
res = self
.storage
.next_variable(Some((name.as_ref(), vendor)))
.await;
continue;
}
let guest_buf_len = *in_out_name_size as usize;
*in_out_name_size = name.as_bytes().len() as u32;
if guest_buf_len < name.as_bytes().len() {
return NvramResult(None, EfiStatus::BUFFER_TOO_SMALL, None);
}
return NvramResult(
Some((name.into_inner(), vendor)),
EfiStatus::SUCCESS,
None,
);
}
Err(e) => {
let status = match &e {
NvramStorageError::Deserialize => EfiStatus::DEVICE_ERROR,
_ => panic!("unexpected NvramStorageError from next_variable"),
};
return NvramResult(None, status, Some(NvramError::NvramStorage(e)));
}
}
}
}
}
mod save_restore {
use super::*;
use vmcore::save_restore::RestoreError;
use vmcore::save_restore::SaveError;
use vmcore::save_restore::SaveRestore;
mod state {
use mesh::payload::Protobuf;
#[derive(Protobuf)]
#[mesh(package = "firmware.uefi.nvram.spec")]
pub enum SavedRuntimeState {
#[mesh(1)]
PreBoot,
#[mesh(2)]
Boot,
#[mesh(3)]
Runtime,
}
#[derive(Protobuf)]
#[mesh(package = "firmware.uefi.nvram.spec")]
pub struct SavedState {
#[mesh(1)]
pub runtime_state: SavedRuntimeState,
}
}
impl<S: InspectableNvramStorage> SaveRestore for NvramSpecServices<S> {
type SavedState = state::SavedState;
fn save(&mut self) -> Result<Self::SavedState, SaveError> {
Ok(state::SavedState {
runtime_state: match self.runtime_state {
RuntimeState::PreBoot => state::SavedRuntimeState::PreBoot,
RuntimeState::Boot => state::SavedRuntimeState::Boot,
RuntimeState::Runtime => state::SavedRuntimeState::Runtime,
},
})
}
fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
let state::SavedState { runtime_state } = state;
self.runtime_state = match runtime_state {
state::SavedRuntimeState::PreBoot => RuntimeState::PreBoot,
state::SavedRuntimeState::Boot => RuntimeState::Boot,
state::SavedRuntimeState::Runtime => RuntimeState::Runtime,
};
Ok(())
}
}
}
#[cfg(test)]
mod test {
use super::*;
use uefi_nvram_storage::in_memory::InMemoryNvram;
// TODO: wchz returns UTF-16 strings, _not_ UCS-2 strings. This works fine
// when using english variable names, but things will _not_ work as expected
// if one tries to use any particularly "exotic" chars (that cannot be
// represented in UCS-2).
use pal_async::async_test;
use wchar::wchz;
use zerocopy::AsBytes;
/// Extension trait around `NvramServices` that makes it easier to use the
/// API outside the context of the UEFI device
#[async_trait::async_trait]
trait NvramServicesTestExt {
async fn set_test_var(&mut self, name: &[u8], attr: u32, data: &[u8]) -> NvramResult<()>;
async fn get_test_var(&mut self, name: &[u8]) -> NvramResult<(u32, Option<Vec<u8>>)>;
async fn get_next_test_var(
&mut self,
name: Option<Vec<u8>>,
) -> NvramResult<Option<Vec<u8>>>;
}
#[async_trait::async_trait]
impl<S: InspectableNvramStorage> NvramServicesTestExt for NvramSpecServices<S> {
async fn set_test_var(&mut self, name: &[u8], attr: u32, data: &[u8]) -> NvramResult<()> {
let vendor = Guid::default();
self.uefi_set_variable(
Some(name),
vendor,
attr,
data.len() as u32,
Some(data.to_vec()),
)
.await
}
async fn get_test_var(&mut self, name: &[u8]) -> NvramResult<(u32, Option<Vec<u8>>)> {
let vendor = Guid::default();
let mut attr = 0;
let NvramResult(data, status, err) = self
.uefi_get_variable(Some(name), vendor, &mut attr, &mut 256, false)
.await;
NvramResult((attr, data), status, err)
}
async fn get_next_test_var(
&mut self,
name: Option<Vec<u8>>,
) -> NvramResult<Option<Vec<u8>>> {
let vendor = Guid::default();
let NvramResult(name_guid, status, err) = self
.uefi_get_next_variable(&mut 256, name.as_deref(), vendor)
.await;
NvramResult(name_guid.map(|(n, _)| n.to_vec()), status, err)
}
}
trait NvramRetTestExt<T> {
fn unwrap_efi_success(self) -> T;
}
impl<T> NvramRetTestExt<T> for NvramResult<T> {
#[track_caller]
fn unwrap_efi_success(self) -> T {
let NvramResult(val, status, err) = self;
if let Some(err) = err {
panic!("{}", err)
}
assert_eq!(status, EfiStatus::SUCCESS);
val
}
}
#[async_test]
async fn runtime_vars() {
let nvram_storage = InMemoryNvram::new();
let mut nvram = NvramSpecServices::new(nvram_storage);
nvram.prepare_for_boot();
let name1 = wchz!(u16, "var1").as_bytes();
let name2 = wchz!(u16, "var2").as_bytes();
let name3 = wchz!(u16, "var3").as_bytes();
let name4 = wchz!(u16, "var4").as_bytes();
let dummy_data = b"dummy data".to_vec();
let runtime_attr = (EfiVariableAttributes::DEFAULT_ATTRIBUTES).into();
let no_runtime_attr = EfiVariableAttributes::DEFAULT_ATTRIBUTES
.with_runtime_access(false)
.into();
// set some vars
nvram
.set_test_var(name1, runtime_attr, &dummy_data)
.await
.unwrap_efi_success();
nvram
.set_test_var(name2, no_runtime_attr, &dummy_data)
.await
.unwrap_efi_success();
nvram
.set_test_var(name3, runtime_attr, &dummy_data)
.await
.unwrap_efi_success();
nvram
.set_test_var(name4, no_runtime_attr, &dummy_data)
.await
.unwrap_efi_success();
// ensure they can all be accessed in pre-runtime environment
// access them individually
let (attr, data) = nvram.get_test_var(name1).await.unwrap_efi_success();
assert_eq!(attr, runtime_attr);
assert_eq!(data, Some(dummy_data.clone()));
let (attr, data) = nvram.get_test_var(name2).await.unwrap_efi_success();
assert_eq!(attr, no_runtime_attr);
assert_eq!(data, Some(dummy_data.clone()));
let (attr, data) = nvram.get_test_var(name3).await.unwrap_efi_success();
assert_eq!(attr, runtime_attr);
assert_eq!(data, Some(dummy_data.clone()));
let (attr, data) = nvram.get_test_var(name4).await.unwrap_efi_success();
assert_eq!(attr, no_runtime_attr);
assert_eq!(data, Some(dummy_data.clone()));
// access them sequentially
let mut name = Some(wchz!(u16, "").as_bytes().into());
name = nvram.get_next_test_var(name).await.unwrap_efi_success();
assert_eq!(name, Some(name1.into()));
name = nvram.get_next_test_var(name).await.unwrap_efi_success();
assert_eq!(name, Some(name2.into()));
name = nvram.get_next_test_var(name).await.unwrap_efi_success();
assert_eq!(name, Some(name3.into()));
name = nvram.get_next_test_var(name).await.unwrap_efi_success();
assert_eq!(name, Some(name4.into()));
let NvramResult(name, status, err) = nvram.get_next_test_var(name).await;
assert!(name.is_none());
assert_eq!(status, EfiStatus::NOT_FOUND);
assert!(err.is_none());
// ensure vars are hidden once runtime toggle is set
nvram.exit_boot_services();
// try to set non-runtime access var
let NvramResult(_, status, err) = nvram
.set_test_var(
wchz!(u16, "non-volatile").as_bytes(),
no_runtime_attr,
&dummy_data,
)
.await;
assert_eq!(status, EfiStatus::INVALID_PARAMETER);
assert!(matches!(err, Some(NvramError::InvalidRuntimeAccess)));
// access them individually
let (attr, data) = nvram.get_test_var(name1).await.unwrap_efi_success();
assert_eq!(attr, runtime_attr);
assert_eq!(data, Some(dummy_data.clone()));
let NvramResult((attr, data), status, err) = nvram.get_test_var(name2).await;
assert_eq!(attr, 0);
assert_eq!(data, None);
assert_eq!(status, EfiStatus::NOT_FOUND);
assert!(matches!(err, Some(NvramError::InvalidRuntimeAccess)));
let (attr, data) = nvram.get_test_var(name3).await.unwrap_efi_success();
assert_eq!(attr, runtime_attr);
assert_eq!(data, Some(dummy_data));
let NvramResult((attr, data), status, err) = nvram.get_test_var(name4).await;
assert_eq!(attr, 0);
assert_eq!(data, None);
assert_eq!(status, EfiStatus::NOT_FOUND);
assert!(matches!(err, Some(NvramError::InvalidRuntimeAccess)));
// access them sequentially
let mut name = Some(wchz!(u16, "").as_bytes().into());
name = nvram.get_next_test_var(name).await.unwrap_efi_success();
assert_eq!(name, Some(name1.into()));
// DON'T read name2
name = nvram.get_next_test_var(name).await.unwrap_efi_success();
assert_eq!(name, Some(name3.into()));
// DON'T read name4
let NvramResult(name, status, err) = nvram.get_next_test_var(name).await;
assert!(name.is_none());
assert_eq!(status, EfiStatus::NOT_FOUND);
assert!(err.is_none());
}
}