firmware_uefi/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! UEFI helper device.
//!
//! A bespoke virtual device that works in-tandem with the custom Hyper-V UEFI
//! firmware running within the guest.
//!
//! This device is primarily concerned with implementing + exposing the various
//! runtime services the UEFI code interfaces with.
//!
//! NOTE: Unlike Hyper-V's implementation, this device is _not_ responsible for
//! injecting UEFI config blobs into guest memory (i.e: things like VM topology
//! information, device enablement info, etc...). That happens _outside_ this
//! device, as part of VM initialization, in tandem with loading the UEFI image
//! itself.
//!
//! # Crate Structure
//!
//! The idea behind this organization is that conceptually, the UEFI device
//! isn't so much a single unified device, rather, it's a hodge-podge of little
//! "micro-devices" that all happen to be dispatched via a single pair of ports.
//!
//! ### `mod service`:
//!
//! The individual UEFI device services themselves.
//!
//! What is a service? As a rule of thumb: a service is something that has
//! one/more [`UefiCommand`]s associated with it.
//!
//! Rather than having each service directly handle its own IO port routing, the
//! top-level `UefiDevice` code in `lib.rs` takes care of that in one central
//! location. That way, the only thing service implementations needs to expose
//! is are service-specific "handler" functions.
//!
//! e.g: there's no reason for, say, UEFI generation ID services to directly
//! share state with the UEFI watchdog service, or the event log service. As
//! such, each is modeled as a separate struct + impl.
//!
//! ### `pub mod platform`
//!
//! A centralized place to expose various service-specific interface traits that
//! must be implemented by the "platform" hosting the UEFI device.
//!
//! This layer of abstraction allows the re-using the same UEFI emulator between
//! multiple VMMs (HvLite, Underhill, etc...), without tying the emulator to any
//! VMM specific infrastructure (via some kind of compile-time feature flag
//! infrastructure).

#![forbid(unsafe_code)]

pub mod platform;
#[cfg(feature = "fuzzing")]
pub mod service;
#[cfg(not(feature = "fuzzing"))]
mod service;

use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::mmio::MmioIntercept;
use chipset_device::pio::PortIoIntercept;
use chipset_device::poll_device::PollDevice;
use chipset_device::ChipsetDevice;
use firmware_uefi_custom_vars::CustomVars;
use guestmem::GuestMemory;
use inspect::Inspect;
use inspect::InspectMut;
use local_clock::InspectableLocalClock;
use pal_async::local::block_with_io;
use platform::logger::UefiLogger;
use platform::nvram::VsmConfig;
use std::convert::TryInto;
use std::ops::RangeInclusive;
use std::task::Context;
use thiserror::Error;
use uefi_nvram_storage::InspectableNvramStorage;
use vmcore::device_state::ChangeDeviceState;
use vmcore::vmtime::VmTimeSource;
use watchdog_core::platform::WatchdogPlatform;

#[derive(Debug, Error)]
pub enum UefiInitError {
    #[error("nvram setup error")]
    NvramSetup(#[from] service::nvram::NvramSetupError),
    #[error("nvram error")]
    Nvram(#[from] service::nvram::NvramError),
    #[error("event log error")]
    EventLog(#[from] service::event_log::EventLogError),
}

#[derive(Inspect, PartialEq, Clone)]
pub enum UefiCommandSet {
    X64,
    Aarch64,
}

#[derive(InspectMut)]
struct UefiDeviceServices {
    nvram: service::nvram::NvramServices,
    event_log: service::event_log::EventLogServices,
    uefi_watchdog: service::uefi_watchdog::UefiWatchdogServices,
    #[inspect(mut)]
    generation_id: service::generation_id::GenerationIdServices,
    #[inspect(mut)]
    time: service::time::TimeServices,
}

// Begin and end range are inclusive.
const IO_PORT_RANGE_BEGIN: u16 = 0x28;
const IO_PORT_RANGE_END: u16 = 0x2f;
const MMIO_RANGE_BEGIN: u64 = 0xeffed000;
const MMIO_RANGE_END: u64 = 0xeffedfff;

const REGISTER_ADDRESS: u16 = 0x0;
const REGISTER_DATA: u16 = 0x4;

/// Various bits of static configuration data.
#[derive(Clone)]
pub struct UefiConfig {
    pub custom_uefi_vars: CustomVars,
    pub secure_boot: bool,
    pub initial_generation_id: [u8; 16],
    pub use_mmio: bool,
    pub command_set: UefiCommandSet,
}

/// Various runtime objects used by the UEFI device + underlying services.
pub struct UefiRuntimeDeps<'a> {
    pub gm: GuestMemory,
    pub nvram_storage: Box<dyn InspectableNvramStorage>,
    pub logger: Box<dyn UefiLogger>,
    pub vmtime: &'a VmTimeSource,
    pub watchdog_platform: Box<dyn WatchdogPlatform>,
    pub generation_id_deps: generation_id::GenerationIdRuntimeDeps,
    pub vsm_config: Option<Box<dyn VsmConfig>>,
    pub time_source: Box<dyn InspectableLocalClock>,
}

/// The Hyper-V UEFI services chipset device.
#[derive(InspectMut)]
pub struct UefiDevice {
    // Fixed configuration
    use_mmio: bool,
    command_set: UefiCommandSet,

    // Runtime glue
    gm: GuestMemory,

    // Sub-emulators
    #[inspect(mut)]
    service: UefiDeviceServices,

    // Volatile state
    #[inspect(hex)]
    address: u32,
}

impl UefiDevice {
    pub async fn new(
        runtime_deps: UefiRuntimeDeps<'_>,
        cfg: UefiConfig,
        is_restoring: bool,
    ) -> Result<Self, UefiInitError> {
        let UefiRuntimeDeps {
            gm,
            nvram_storage,
            logger,
            vmtime,
            watchdog_platform,
            generation_id_deps,
            vsm_config,
            time_source,
        } = runtime_deps;

        let uefi = UefiDevice {
            use_mmio: cfg.use_mmio,
            command_set: cfg.command_set,
            address: 0,
            gm,
            service: UefiDeviceServices {
                nvram: service::nvram::NvramServices::new(
                    nvram_storage,
                    cfg.custom_uefi_vars,
                    cfg.secure_boot,
                    vsm_config,
                    is_restoring,
                )
                .await?,
                event_log: service::event_log::EventLogServices::new(logger),
                uefi_watchdog: service::uefi_watchdog::UefiWatchdogServices::new(
                    vmtime.access("uefi-watchdog"),
                    watchdog_platform,
                    is_restoring,
                )
                .await,
                generation_id: service::generation_id::GenerationIdServices::new(
                    cfg.initial_generation_id,
                    generation_id_deps,
                ),
                time: service::time::TimeServices::new(time_source),
            },
        };
        Ok(uefi)
    }

    fn read_data(&mut self, addr: u32) -> u32 {
        match UefiCommand(addr) {
            UefiCommand::WATCHDOG_RESOLUTION
            | UefiCommand::WATCHDOG_CONFIG
            | UefiCommand::WATCHDOG_COUNT => {
                let reg = bios_cmd_to_watchdog_register(UefiCommand(addr)).unwrap();
                self.handle_watchdog_read(reg)
            }
            UefiCommand::NFIT_SIZE => 0, // no NFIT
            _ => {
                tracelimit::warn_ratelimited!(?addr, "unknown uefi read");
                !0
            }
        }
    }

    fn write_data(&mut self, addr: u32, data: u32) {
        match UefiCommand(addr) {
            UefiCommand::NVRAM => block_with_io(|_| self.nvram_handle_command(data.into())),
            UefiCommand::EVENT_LOG_FLUSH => self.event_log_flush(data),
            UefiCommand::WATCHDOG_RESOLUTION
            | UefiCommand::WATCHDOG_CONFIG
            | UefiCommand::WATCHDOG_COUNT => {
                let reg = bios_cmd_to_watchdog_register(UefiCommand(addr)).unwrap();
                self.handle_watchdog_write(reg, data)
            }
            UefiCommand::GENERATION_ID_PTR_LOW => self.write_generation_id_low(data),
            UefiCommand::GENERATION_ID_PTR_HIGH => self.write_generation_id_high(data),
            UefiCommand::CRYPTO => self.crypto_handle_command(data.into()),
            UefiCommand::BOOT_FINALIZE if self.command_set == UefiCommandSet::X64 => {
                // We set MTRRs across all processors at load time, so we don't need to do anything here.
            }
            UefiCommand::GET_TIME if self.command_set == UefiCommandSet::Aarch64 => {
                if let Err(err) = self.get_time(data as u64) {
                    tracelimit::error_ratelimited!(
                        error = &err as &dyn std::error::Error,
                        "failed to access memory for GET_TIME"
                    );
                }
            }
            UefiCommand::SET_TIME if self.command_set == UefiCommandSet::Aarch64 => {
                if let Err(err) = self.set_time(data as u64) {
                    tracelimit::error_ratelimited!(
                        error = &err as &dyn std::error::Error,
                        "failed to access memory for SET_TIME"
                    );
                }
            }
            _ => tracelimit::warn_ratelimited!(addr, data, "unknown uefi write"),
        }
    }
}

impl ChangeDeviceState for UefiDevice {
    fn start(&mut self) {}

    async fn stop(&mut self) {}

    async fn reset(&mut self) {
        self.address = 0;

        self.service.nvram.reset();
        self.service.event_log.reset();
        self.service.uefi_watchdog.watchdog.reset();
        self.service.generation_id.reset();
    }
}

impl ChipsetDevice for UefiDevice {
    fn supports_pio(&mut self) -> Option<&mut dyn PortIoIntercept> {
        (!self.use_mmio).then_some(self)
    }

    fn supports_mmio(&mut self) -> Option<&mut dyn MmioIntercept> {
        self.use_mmio.then_some(self)
    }

    fn supports_poll_device(&mut self) -> Option<&mut dyn PollDevice> {
        Some(self)
    }
}

impl PollDevice for UefiDevice {
    fn poll_device(&mut self, cx: &mut Context<'_>) {
        self.service.uefi_watchdog.watchdog.poll(cx);
        self.service.generation_id.poll(cx);
    }
}

impl PortIoIntercept for UefiDevice {
    fn io_read(&mut self, io_port: u16, data: &mut [u8]) -> IoResult {
        if data.len() != 4 {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        let offset = io_port - IO_PORT_RANGE_BEGIN;

        let v = match offset {
            REGISTER_ADDRESS => self.address,
            REGISTER_DATA => self.read_data(self.address),
            _ => return IoResult::Err(IoError::InvalidRegister),
        };

        data.copy_from_slice(&v.to_ne_bytes());
        IoResult::Ok
    }

    fn io_write(&mut self, io_port: u16, data: &[u8]) -> IoResult {
        if data.len() != 4 {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        let offset = io_port - IO_PORT_RANGE_BEGIN;

        let v = u32::from_ne_bytes(data.try_into().unwrap());
        match offset {
            REGISTER_ADDRESS => {
                self.address = v;
            }
            REGISTER_DATA => self.write_data(self.address, v),
            _ => return IoResult::Err(IoError::InvalidRegister),
        }
        IoResult::Ok
    }

    fn get_static_regions(&mut self) -> &[(&str, RangeInclusive<u16>)] {
        &[("uefi", IO_PORT_RANGE_BEGIN..=IO_PORT_RANGE_END)]
    }
}

impl MmioIntercept for UefiDevice {
    fn mmio_read(&mut self, addr: u64, data: &mut [u8]) -> IoResult {
        if data.len() != 4 {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        let v = match (addr - MMIO_RANGE_BEGIN) as u16 {
            REGISTER_ADDRESS => self.address,
            REGISTER_DATA => self.read_data(self.address),
            _ => return IoResult::Err(IoError::InvalidRegister),
        };

        data.copy_from_slice(&v.to_ne_bytes());
        IoResult::Ok
    }

    fn mmio_write(&mut self, addr: u64, data: &[u8]) -> IoResult {
        let Ok(data) = data.try_into() else {
            return IoResult::Err(IoError::InvalidAccessSize);
        };

        let v = u32::from_ne_bytes(data);
        match (addr - MMIO_RANGE_BEGIN) as u16 {
            REGISTER_ADDRESS => {
                self.address = v;
            }
            REGISTER_DATA => self.write_data(self.address, v),
            _ => return IoResult::Err(IoError::InvalidRegister),
        }
        IoResult::Ok
    }

    fn get_static_regions(&mut self) -> &[(&str, RangeInclusive<u64>)] {
        &[("uefi", MMIO_RANGE_BEGIN..=MMIO_RANGE_END)]
    }
}

fn bios_cmd_to_watchdog_register(cmd: UefiCommand) -> Option<watchdog_core::Register> {
    let res = match cmd {
        UefiCommand::WATCHDOG_RESOLUTION => watchdog_core::Register::Resolution,
        UefiCommand::WATCHDOG_CONFIG => watchdog_core::Register::Config,
        UefiCommand::WATCHDOG_COUNT => watchdog_core::Register::Count,
        _ => return None,
    };
    Some(res)
}

open_enum::open_enum! {
    pub enum UefiCommand: u32 {
        GENERATION_ID_PTR_LOW        = 0x0E,
        GENERATION_ID_PTR_HIGH       = 0x0F,
        BOOT_FINALIZE                = 0x1A,

        PROCESSOR_REPLY_STATUS_INDEX = 0x13,
        PROCESSOR_REPLY_STATUS       = 0x14,
        PROCESSOR_MAT_ENABLE         = 0x15,

        // Values added in Windows Blue
        NVRAM                        = 0x24,
        CRYPTO                       = 0x26,

        // Watchdog device (Windows 8.1 MQ)
        WATCHDOG_CONFIG              = 0x27,
        WATCHDOG_RESOLUTION          = 0x28,
        WATCHDOG_COUNT               = 0x29,

        // Event Logging (Windows 8.1 MQ/M0)
        EVENT_LOG_FLUSH              = 0x30,

        // Set MOR bit variable. Triggered by TPM _DSM Memory Clear Interface.
        // In real hardware, _DSM triggers CPU SMM. UEFI SMM driver sets the
        // MOR state via variable service. Hypervisor does not support virtual SMM,
        // so _DSM is not able to trigger SMI in Hyper-V virtualization. The
        // alternative is to send an IO port command to BIOS device and persist the
        // MOR state in UEFI NVRAM via variable service on host.
        MOR_SET_VARIABLE             = 0x31,

        // ARM64 RTC GetTime SetTime (RS2)
        GET_TIME                     = 0x34,
        SET_TIME                     = 0x35,

        // Debugger output
        DEBUG_OUTPUT_STRING          = 0x36,

        // vPMem NFIT (RS3)
        NFIT_SIZE                    = 0x37,
        NFIT_POPULATE                = 0x38,
        VPMEM_SET_ACPI_BUFFER        = 0x39,
    }
}

mod save_restore {
    use super::*;
    use vmcore::save_restore::RestoreError;
    use vmcore::save_restore::SaveError;
    use vmcore::save_restore::SaveRestore;

    mod state {
        use crate::service::event_log::EventLogServices;
        use crate::service::generation_id::GenerationIdServices;
        use crate::service::nvram::NvramServices;
        use crate::service::time::TimeServices;
        use crate::service::uefi_watchdog::UefiWatchdogServices;
        use mesh::payload::Protobuf;
        use vmcore::save_restore::SaveRestore;
        use vmcore::save_restore::SavedStateRoot;

        #[derive(Protobuf, SavedStateRoot)]
        #[mesh(package = "firmware.uefi")]
        pub struct SavedState {
            #[mesh(1)]
            pub address: u32,

            #[mesh(2)]
            pub nvram: <NvramServices as SaveRestore>::SavedState,
            #[mesh(3)]
            pub event_log: <EventLogServices as SaveRestore>::SavedState,
            #[mesh(4)]
            pub watchdog: <UefiWatchdogServices as SaveRestore>::SavedState,
            #[mesh(5)]
            pub generation_id: <GenerationIdServices as SaveRestore>::SavedState,
            #[mesh(6)]
            pub time: <TimeServices as SaveRestore>::SavedState,
        }
    }

    impl SaveRestore for UefiDevice {
        type SavedState = state::SavedState;

        fn save(&mut self) -> Result<Self::SavedState, SaveError> {
            let Self {
                use_mmio: _,
                command_set: _,
                gm: _,
                service:
                    UefiDeviceServices {
                        nvram,
                        event_log,
                        uefi_watchdog,
                        generation_id,
                        time,
                    },
                address,
            } = self;

            Ok(state::SavedState {
                address: *address,

                nvram: nvram.save()?,
                event_log: event_log.save()?,
                watchdog: uefi_watchdog.save()?,
                generation_id: generation_id.save()?,
                time: time.save()?,
            })
        }

        fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
            let state::SavedState {
                address,

                nvram,
                event_log,
                watchdog,
                generation_id,
                time,
            } = state;

            self.address = address;

            self.service.nvram.restore(nvram)?;
            self.service.event_log.restore(event_log)?;
            self.service.uefi_watchdog.restore(watchdog)?;
            self.service.generation_id.restore(generation_id)?;
            self.service.time.restore(time)?;

            Ok(())
        }
    }
}