fdt/
parser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Code to parse a Flattened DeviceTree binary blob.

use super::spec;
use super::spec::U32b;
use super::spec::U64b;
use core::fmt::Display;
use core::mem::size_of;
use zerocopy::FromBytes;
use zerocopy::Immutable;
use zerocopy::KnownLayout;

/// Errors returned when parsing a FDT.
#[derive(Debug)]
pub struct Error<'a>(ErrorKind<'a>);

impl Display for Error<'_> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        self.0.fmt(f)
    }
}

// TODO: Once core::error::Error is stablized, we can remove this feature gate.
impl core::error::Error for Error<'_> {}

/// Types of errors when parsing a FDT.
#[derive(Debug)]
enum ErrorKind<'a> {
    /// Buffer is not aligned to u32
    BufferAlignment,
    /// Buffer too small for fixed header
    NoHeader,
    /// Fixed header magic invalid
    HeaderMagic,
    /// Total size described in the fixed header is greater than buffer provided
    HeaderTotalSize,
    /// Header version is invalid
    HeaderVersion,
    /// Structure block not contained within buffer
    StructureBlock,
    /// Structure block not aligned to u32
    StructureBlockAlignment,
    /// Memory reservation block not contained within buffer
    MemoryReservationBlock,
    /// Memory reservation block did not end with an empty entry
    MemoryReservationBlockEnd,
    /// Strings block not contained within buffer
    StringsBlock,
    /// No root node present
    RootNode,
    /// More than one node at the root
    MultipleRootNodes,
    /// Unable to parse FDT token when parsing nodes
    NodeToken(ParseTokenError),
    /// Unexpected token when parsing begin node
    NodeBegin(u32),
    /// Unexpected token when parsing node properties
    NodeProp(u32),
    /// Unexpected token when parsing children nodes
    NodeChildren(u32),
    /// Property data buffer len is not a multiple of requested type size
    PropertyDataTypeBuffer {
        node_name: &'a str,
        prop_name: &'a str,
    },
    /// Property requested at offset is larger than data buffer
    PropertyOffset {
        node_name: &'a str,
        prop_name: &'a str,
    },
    /// Property data is not a a valid string
    PropertyStr {
        node_name: &'a str,
        error: StringError,
    },
    /// Unable to parse FDT token when parsing properties
    PropertyTokenParse {
        node_name: &'a str,
        error: ParseTokenError,
    },
    /// Unexpected FDT token when parsing properties
    PropertyToken { node_name: &'a str, token: u32 },
    /// Property name string is not a valid string
    PropertyNameStr {
        node_name: &'a str,
        error: StringError,
    },
    /// FDT end token not present at end of structure block
    FdtEnd,
}

impl Display for ErrorKind<'_> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            ErrorKind::BufferAlignment => f.write_str("Buffer is not aligned to u32"),
            ErrorKind::NoHeader => f.write_str("Buffer too small for fixed FDT header"),
            ErrorKind::HeaderMagic => f.write_str("FDT header magic field invalid"),
            ErrorKind::HeaderTotalSize => {
                f.write_str("FDT header total size greater than provided buffer")
            }
            ErrorKind::HeaderVersion => f.write_str("FDT header version invalid"),
            ErrorKind::StructureBlock => f.write_str("Structure block not contained within buffer"),
            ErrorKind::StructureBlockAlignment => {
                f.write_str("Structure block offset is not aligned to u32")
            }
            ErrorKind::MemoryReservationBlock => {
                f.write_str("Memory reservation block not contained within buffer")
            }
            ErrorKind::MemoryReservationBlockEnd => {
                f.write_str("Memory reservation block did not end with an empty entry")
            }
            ErrorKind::StringsBlock => f.write_str("Strings block not contained within buffer"),
            ErrorKind::RootNode => f.write_str("No root node present"),
            ErrorKind::MultipleRootNodes => f.write_str("More than one node at the root"),
            ErrorKind::NodeToken(e) => f.write_fmt(format_args!(
                "Unable to parse FDT token when parsing nodes {}",
                e
            )),
            ErrorKind::NodeBegin(token) => f.write_fmt(format_args!(
                "Unexpected token when parsing begin node {}",
                token
            )),
            ErrorKind::NodeProp(token) => f.write_fmt(format_args!(
                "Unexpected token when parsing node properties {}",
                token
            )),
            ErrorKind::NodeChildren(token) => f.write_fmt(format_args!(
                "Unexpected token when parsing children nodes {}",
                token
            )),
            ErrorKind::PropertyDataTypeBuffer { node_name, prop_name } => f.write_fmt(format_args!(
                "Property {prop_name} data buffer len is not multiple of type size for node {node_name}"
            )),
            ErrorKind::PropertyOffset { node_name, prop_name } => f.write_fmt(format_args!(
                "Property {prop_name} requested at offset is larger than data buffer for node {node_name}"
            )),
            ErrorKind::PropertyStr { node_name, error } => f.write_fmt(format_args!(
                "Property data is not a a valid string for node {node_name}: {error}"
            )),
            ErrorKind::PropertyTokenParse { node_name, error } => f.write_fmt(format_args!(
                "Unable to parse FDT token when parsing properties for node {node_name}: {error}",
            )),
            ErrorKind::PropertyToken { node_name, token } => f.write_fmt(format_args!(
                "Unexpected FDT token when parsing properties for node {node_name}: {}",
                token
            )),
            ErrorKind::PropertyNameStr { node_name, error } => f.write_fmt(format_args!(
                "Property name string is not a valid string for node {node_name}: {error}",
            )),
            ErrorKind::FdtEnd => f.write_str("FDT end token not present at end of structure block"),
        }
    }
}

/// A parser used to parse a FDT.
pub struct Parser<'a> {
    /// The total size used by the dt.
    pub total_size: usize,
    /// The strings block.
    strings_block: &'a [u8],
    /// The structure block.
    structure_block: &'a [u8],
    /// The bsp reg field
    pub boot_cpuid_phys: u32,
    /// The memory reservations blocks without the final empty entry.
    memory_reservations: &'a [u8],
}

impl<'a> Parser<'a> {
    /// Read just the `totalsize` field of a FDT header. This is useful when
    /// attempting to determine the overall size of a device tree.
    pub fn read_total_size(buf: &[u8]) -> Result<usize, Error<'a>> {
        let header = spec::Header::read_from_prefix(buf)
            .map_err(|_| Error(ErrorKind::NoHeader))?
            .0; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)

        if u32::from(header.magic) != spec::MAGIC {
            Err(Error(ErrorKind::HeaderMagic))
        } else {
            Ok(u32::from(header.totalsize) as usize)
        }
    }

    /// Create a new instance of a FDT parser.
    pub fn new(buf: &'a [u8]) -> Result<Self, Error<'a>> {
        if buf.as_ptr() as usize % size_of::<u32>() != 0 {
            return Err(Error(ErrorKind::BufferAlignment));
        }

        let header = spec::Header::read_from_prefix(buf)
            .map_err(|_| Error(ErrorKind::NoHeader))?
            .0; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)

        if u32::from(header.magic) != spec::MAGIC {
            return Err(Error(ErrorKind::HeaderMagic));
        }

        // Validate total size within buf.
        let total_size = u32::from(header.totalsize) as usize;
        if total_size > buf.len() {
            return Err(Error(ErrorKind::HeaderTotalSize));
        }

        if u32::from(header.version) < spec::CURRENT_VERSION
            || u32::from(header.last_comp_version) > spec::COMPAT_VERSION
        {
            return Err(Error(ErrorKind::HeaderVersion));
        }

        // Validate the mem_rsvmap region ends with an empty entry. Currently
        // the parser does not make these values accessible.
        let mem_rsvmap_offset = u32::from(header.off_mem_rsvmap) as usize;
        let mut memory_reservations_len = 0;
        let mut mem_rsvmap = buf
            .get(mem_rsvmap_offset..)
            .ok_or(Error(ErrorKind::MemoryReservationBlock))?;
        loop {
            let (entry, rest) = spec::ReserveEntry::read_from_prefix(mem_rsvmap)
                .map_err(|_| Error(ErrorKind::MemoryReservationBlockEnd))?; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)

            if u64::from(entry.address) == 0 && u64::from(entry.size) == 0 {
                break;
            }

            mem_rsvmap = rest;
            memory_reservations_len += size_of::<spec::ReserveEntry>();
        }

        let memory_reservations = buf
            .get(mem_rsvmap_offset..(mem_rsvmap_offset + memory_reservations_len))
            .ok_or(Error(ErrorKind::MemoryReservationBlock))?;

        let struct_offset = u32::from(header.off_dt_struct) as usize;
        let struct_len = u32::from(header.size_dt_struct) as usize;

        if struct_offset % size_of::<u32>() != 0 {
            return Err(Error(ErrorKind::StructureBlockAlignment));
        }

        let structure_block = buf
            .get(struct_offset..(struct_offset + struct_len))
            .ok_or(Error(ErrorKind::StructureBlock))?;

        // FDT_END must be the last token in the structure block. Ignore it once
        // checked.
        let structure_block = structure_block
            .strip_suffix(&spec::END.to_be_bytes())
            .ok_or(Error(ErrorKind::FdtEnd))?;

        let strings_offset = u32::from(header.off_dt_strings) as usize;
        let strings_len = u32::from(header.size_dt_strings) as usize;
        let strings_block = buf
            .get(strings_offset..(strings_offset + strings_len))
            .ok_or(Error(ErrorKind::StringsBlock))?;

        Ok(Self {
            total_size,
            strings_block,
            structure_block,
            memory_reservations,
            boot_cpuid_phys: header.boot_cpuid_phys.into(),
        })
    }

    /// Returns the root node of this FDT.
    pub fn root<'b>(&'b self) -> Result<Node<'a>, Error<'a>> {
        let mut iter = NodeIter {
            strings_block: self.strings_block,
            nodes: self.structure_block,
        };

        let root = iter.next().ok_or(Error(ErrorKind::RootNode))??;

        if iter.next().is_some() {
            Err(Error(ErrorKind::MultipleRootNodes))
        } else {
            Ok(root)
        }
    }

    /// Returns an iterator to parse through memory reservations.
    pub fn memory_reservations(&self) -> MemoryReserveIter<'a> {
        MemoryReserveIter {
            memory_reservations: self.memory_reservations,
        }
    }
}

/// Get a string from the strings block at the given offset.
fn string_from_offset(strings_block: &[u8], offset: U32b) -> Result<&str, StringError> {
    let offset = u32::from(offset) as usize;

    extract_str_from_bytes(strings_block.get(offset..).ok_or(StringError::Offset)?)
}

/// An iterator to parse through FDT nodes.
pub struct NodeIter<'a> {
    strings_block: &'a [u8],
    nodes: &'a [u8],
}

enum ParsedToken<'a> {
    BeginNode { name: &'a str },
    Property { name_offset: U32b, data: &'a [u8] },
    EndNode,
    Nop,
    End,
}

impl ParsedToken<'_> {
    fn raw(&self) -> u32 {
        match self {
            ParsedToken::BeginNode { .. } => spec::BEGIN_NODE,
            ParsedToken::Property { .. } => spec::PROP,
            ParsedToken::EndNode => spec::END_NODE,
            ParsedToken::Nop => spec::NOP,
            ParsedToken::End => spec::END,
        }
    }
}

/// Errors returned when parsing FDT tokens.
#[derive(Debug)]
enum ParseTokenError {
    /// Unknown token
    Unknown(u32),
    /// Buf too small
    BufLen,
    /// Buf too small for prop header
    PropHeader,
    /// Buf too small for prop data described in prop header
    PropData,
    /// Begin node name is not valid
    BeginName(StringError),
    /// Buf too small for begin node name alignment
    BeginNameAlignment,
}

impl Display for ParseTokenError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            ParseTokenError::Unknown(token) => {
                f.write_fmt(format_args!("Unknown FDT token {}", token))
            }
            ParseTokenError::BufLen => f.write_str("Buffer too small to read token"),
            ParseTokenError::PropHeader => f.write_str("Buffer too small to read property header"),
            ParseTokenError::PropData => {
                f.write_str("Buffer too small to read property data encoded in property header")
            }
            ParseTokenError::BeginName(e) => {
                f.write_fmt(format_args!("Node name is not valid {}", e))
            }
            ParseTokenError::BeginNameAlignment => {
                f.write_str("Buffer is too small for begin node name alignment")
            }
        }
    }
}

/// Read to the next token from `buf`, returning `(token, remaining_buffer)`.
fn read_token(buf: &[u8]) -> Result<(ParsedToken<'_>, &[u8]), ParseTokenError> {
    let (token, rest) = U32b::read_from_prefix(buf).map_err(|_| ParseTokenError::BufLen)?; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)
    let token = u32::from(token);
    match token {
        spec::BEGIN_NODE => {
            // Extract the node's name.
            let name = extract_str_from_bytes(rest).map_err(ParseTokenError::BeginName)?;

            // The string extracted does not contain the null terminator. Add
            // the length and align up the total size.
            let aligned_str_len = ((name.len() + 1) + 4 - 1) & !(4 - 1);

            // Attempt to extract the remainder of the slice, not including the
            // aligned padding bytes.
            let rest = rest
                .get(aligned_str_len..)
                .ok_or(ParseTokenError::BeginNameAlignment)?;

            Ok((ParsedToken::BeginNode { name }, rest))
        }
        spec::PROP => {
            // Read the property header
            let (header, rest) = spec::PropHeader::read_from_prefix(rest)
                .map_err(|_| ParseTokenError::PropHeader)?; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)
            let len = u32::from(header.len) as usize;
            let align_up_len = (len + 4 - 1) & !(4 - 1);

            if align_up_len > rest.len() {
                return Err(ParseTokenError::PropData);
            }

            // Only return the non-aligned data buf
            let data = &rest[..len];
            let (_, rest) = rest.split_at(align_up_len);

            Ok((
                ParsedToken::Property {
                    name_offset: header.nameoff,
                    data,
                },
                rest,
            ))
        }
        spec::END_NODE => Ok((ParsedToken::EndNode, rest)),
        spec::NOP => Ok((ParsedToken::Nop, rest)),
        spec::END => Ok((ParsedToken::End, rest)),
        _ => Err(ParseTokenError::Unknown(token)),
    }
}

impl<'a> NodeIter<'a> {
    fn parse(&mut self) -> Result<Option<Node<'a>>, ErrorKind<'a>> {
        while !self.nodes.is_empty() {
            // Parse the next token.
            let (token, rest) = read_token(self.nodes).map_err(ErrorKind::NodeToken)?;
            debug_assert!(rest.len() % size_of::<U32b>() == 0);

            let name = match token {
                ParsedToken::Nop => {
                    self.nodes = rest;
                    continue;
                }
                ParsedToken::BeginNode { name } => name,
                _ => return Err(ErrorKind::NodeBegin(token.raw())),
            };

            self.nodes = rest;

            // Find if there is a properties section, which comes before children.
            let mut prop = self.nodes;
            'prop: loop {
                let (token, rest) = read_token(prop).map_err(ErrorKind::NodeToken)?;
                match token {
                    ParsedToken::BeginNode { .. } => {
                        // Begin node means move to parsing children nodes.
                        break 'prop;
                    }
                    ParsedToken::EndNode => {
                        // End node means this node had no properties.
                        break 'prop;
                    }
                    ParsedToken::Property { .. } | ParsedToken::Nop => {}
                    token => return Err(ErrorKind::NodeProp(token.raw())),
                };

                prop = rest;
            }

            let (prop, rest) = self.nodes.split_at(self.nodes.len() - prop.len());
            self.nodes = rest;

            // Discover if there are any children, which are signified
            // by other BEGIN_NODE tokens.
            let mut children = self.nodes;
            let mut begin_node_count = 0;
            'children: loop {
                let (token, rest) = read_token(children).map_err(ErrorKind::NodeToken)?;
                match token {
                    ParsedToken::EndNode => {
                        if begin_node_count == 0 {
                            // End of current node
                            break 'children;
                        } else {
                            // Parsing child node, pop node count
                            begin_node_count -= 1;
                        }
                    }
                    ParsedToken::BeginNode { .. } => {
                        begin_node_count += 1;
                    }
                    ParsedToken::Property { .. } | ParsedToken::Nop => {}
                    token => return Err(ErrorKind::NodeChildren(token.raw())),
                };

                children = rest;
            }

            let (children, rest) = self.nodes.split_at(self.nodes.len() - children.len());
            self.nodes = rest;

            // Consume END_NODE and return the parsed node
            let (end_node, rest) = read_token(self.nodes).expect("should be end node");
            assert!(matches!(end_node, ParsedToken::EndNode));
            self.nodes = rest;

            return Ok(Some(Node {
                name,
                strings_block: self.strings_block,
                properties: prop,
                children,
            }));
        }

        Ok(None)
    }
}

impl<'a> Iterator for NodeIter<'a> {
    type Item = Result<Node<'a>, Error<'a>>;

    fn next(&mut self) -> Option<Self::Item> {
        self.parse().map_err(Error).transpose()
    }
}

/// A parsed FDT node.
pub struct Node<'a> {
    /// The name for this node.
    pub name: &'a str,
    strings_block: &'a [u8],
    properties: &'a [u8],
    children: &'a [u8],
}

impl<'a> Node<'a> {
    /// Returns an iterator to parse through children of this node.
    pub fn children(&self) -> NodeIter<'a> {
        NodeIter {
            strings_block: self.strings_block,
            nodes: self.children,
        }
    }

    /// Returns an iterator to parse through properties of this node.
    pub fn properties(&self) -> PropertyIter<'a> {
        PropertyIter {
            node_name: self.name,
            strings_block: self.strings_block,
            properties: self.properties,
        }
    }

    /// Find a property with a given name.
    ///
    /// Returns `Ok(None)` if the property does not exist.
    ///
    /// Returns an error if this node's properties are unable to be parsed.
    ///
    /// This method is O(n) for the number of properties on this node, as the
    /// [`Self::properties`] is used to perform a linear search.
    pub fn find_property(&self, name: &str) -> Result<Option<Property<'a>>, Error<'a>> {
        for prop in self.properties() {
            let prop = prop?;

            if name == prop.name {
                return Ok(Some(prop));
            }
        }

        Ok(None)
    }
}

/// An iterator for FDT node properties.
pub struct PropertyIter<'a> {
    node_name: &'a str,
    strings_block: &'a [u8],
    properties: &'a [u8],
}

impl<'a> PropertyIter<'a> {
    fn parse(&mut self) -> Result<Option<Property<'a>>, ErrorKind<'a>> {
        while !self.properties.is_empty() {
            // Parse the next token.
            let (token, rest) =
                read_token(self.properties).map_err(|error| ErrorKind::PropertyTokenParse {
                    node_name: self.node_name,
                    error,
                })?;

            let (name_off, data, rest) = match token {
                ParsedToken::Nop => {
                    self.properties = rest;
                    continue;
                }
                ParsedToken::Property { name_offset, data } => (name_offset, data, rest),
                _ => {
                    return Err(ErrorKind::PropertyToken {
                        node_name: self.node_name,
                        token: token.raw(),
                    });
                }
            };

            // Read the property name
            let name = string_from_offset(self.strings_block, name_off).map_err(|error| {
                ErrorKind::PropertyNameStr {
                    node_name: self.node_name,
                    error,
                }
            })?;

            self.properties = rest;
            return Ok(Some(Property {
                node_name: self.node_name,
                name,
                data,
            }));
        }

        Ok(None)
    }
}

impl<'a> Iterator for PropertyIter<'a> {
    type Item = Result<Property<'a>, Error<'a>>;

    fn next(&mut self) -> Option<Self::Item> {
        self.parse().map_err(Error).transpose()
    }
}

/// A parsed FDT node property.
pub struct Property<'a> {
    node_name: &'a str,
    /// The name for this property.
    pub name: &'a str,
    /// Raw data for this property.
    pub data: &'a [u8],
}

impl<'a> Property<'a> {
    /// Read a value at a given offset, indexed by `size_of::<T>() * index`.
    /// T must be BigEndian.
    fn read_val<T: FromBytes + Copy + zerocopy::Unaligned + Immutable + KnownLayout>(
        &self,
        index: usize,
    ) -> Result<T, Error<'a>> {
        // self.data must be:
        //  - len must be multiple of size_of(T)
        //  - index must be within the constructed slice of T
        //
        // NOTE: The unaligned bound on T is due to the fact that FDT properties
        // are only guaranteed to sit on a 4 byte alignment boundary. Thus, to
        // read types that are greater than 4 bytes, we must bound T to accept
        // unaligned types so LayoutVerified does not apply alignment and read
        // incorrect values.
        <[T]>::ref_from_bytes(self.data)
            .map_err(|_| {
                // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)
                Error(ErrorKind::PropertyDataTypeBuffer {
                    node_name: self.node_name,
                    prop_name: self.name,
                })
            })?
            .get(index)
            .ok_or(Error(ErrorKind::PropertyOffset {
                node_name: self.node_name,
                prop_name: self.name,
            }))
            .copied()
    }

    /// Read a u32 from this property, at a given u32 index.
    pub fn read_u32(&self, index: usize) -> Result<u32, Error<'a>> {
        let val: u32 = self.read_val::<U32b>(index)?.into();

        Ok(val)
    }

    /// Read a u64 from this property, at a given u64 index.
    pub fn read_u64(&self, index: usize) -> Result<u64, Error<'a>> {
        let val: u64 = self.read_val::<U64b>(index)?.into();

        Ok(val)
    }

    /// Read the data as a `&str`.
    pub fn read_str(&self) -> Result<&'a str, Error<'a>> {
        extract_str_from_bytes(self.data).map_err(|error| {
            Error(ErrorKind::PropertyStr {
                node_name: self.node_name,
                error,
            })
        })
    }

    /// Read data as an iterator of u64 values.
    pub fn as_64_list(&self) -> Result<impl Iterator<Item = u64> + use<'a>, Error<'a>> {
        Ok(<[U64b]>::ref_from_bytes(self.data)
            .map_err(|_| {
                // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)
                Error(ErrorKind::PropertyDataTypeBuffer {
                    node_name: self.node_name,
                    prop_name: self.name,
                })
            })?
            .iter()
            .map(|v| v.get()))
    }
}

/// Errors when reading a string from the FDT.
#[derive(Debug)]
enum StringError {
    /// Invalid string block offset
    Offset,
    /// No null terminator found
    Null,
    /// String is not utf8
    Utf8(core::str::Utf8Error),
}

impl Display for StringError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            StringError::Offset => f.write_str("Invalid string block offset"),
            StringError::Null => f.write_str("No null terminator found"),
            StringError::Utf8(e) => f.write_fmt(format_args!("String is not utf8 {}", e)),
        }
    }
}

/// An iterator to parse through memory reservations.
pub struct MemoryReserveIter<'a> {
    memory_reservations: &'a [u8],
}

impl<'a> MemoryReserveIter<'a> {
    fn parse(&mut self) -> Result<Option<spec::ReserveEntry>, ErrorKind<'a>> {
        if self.memory_reservations.is_empty() {
            return Ok(None);
        }

        let (entry, rest) = spec::ReserveEntry::read_from_prefix(self.memory_reservations)
            .map_err(|_| ErrorKind::MemoryReservationBlock)?; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)

        if u64::from(entry.address) == 0 && u64::from(entry.size) == 0 {
            return Ok(None);
        }

        self.memory_reservations = rest;

        Ok(Some(entry))
    }
}

impl<'a> Iterator for MemoryReserveIter<'a> {
    type Item = Result<spec::ReserveEntry, Error<'a>>;

    fn next(&mut self) -> Option<Self::Item> {
        self.parse().map_err(Error).transpose()
    }
}

impl core::error::Error for StringError {}

/// Extract a string from bytes treated as a C String, stopping at the first null terminator.
fn extract_str_from_bytes(bytes: &[u8]) -> Result<&str, StringError> {
    // Find the null terminator.
    // TODO: unstable CStr::from_bytes_until_nul would be nice here.
    let null_index = bytes
        .iter()
        .position(|char| *char == 0)
        .ok_or(StringError::Null)?;

    core::str::from_utf8(&bytes[..null_index]).map_err(StringError::Utf8)
}

#[cfg(test)]
mod test {
    extern crate alloc;

    use super::*;
    use crate::builder::Builder;
    use crate::builder::BuilderConfig;
    use crate::builder::StringId;
    use crate::spec::ReserveEntry;
    use alloc::format;
    use alloc::string::String;
    use alloc::vec;
    use alloc::vec::Vec;
    use zerocopy::IntoBytes;

    #[derive(Debug, Clone, PartialEq, Eq)]
    enum DtProp {
        PropA(u64),
        PropB(Vec<u8>),
        Reg(u32),
        SuperAwesomeProp(String),
        PropList(Vec<u64>),
    }

    #[derive(Debug, PartialEq, Eq)]
    struct DtNode {
        name: String,
        children: Vec<DtNode>,
        properties: Vec<DtProp>,
    }

    #[derive(Debug, PartialEq, Eq)]
    struct Dt {
        boot_cpuid_phys: u32,
        root: DtNode,
        memory_reservations: Vec<ReserveEntry>,
    }

    struct PropIds {
        propa: StringId,
        propb: StringId,
        reg: StringId,
        saprop: StringId,
        proplist: StringId,
    }

    macro_rules! build_fdt_props {
        ($ids:expr, $node:expr, $builder:expr) => {{
            let mut new_builder = $builder.start_node(&$node.name).unwrap();

            for prop in &$node.properties {
                new_builder = match &prop {
                    DtProp::PropA(val) => new_builder.add_u64($ids.propa, *val).unwrap(),
                    DtProp::PropB(val) => new_builder.add_prop_array($ids.propb, &[&val]).unwrap(),
                    DtProp::Reg(val) => new_builder.add_u32($ids.reg, *val).unwrap(),
                    DtProp::SuperAwesomeProp(val) => new_builder.add_str($ids.saprop, val).unwrap(),
                    DtProp::PropList(val) => {
                        // convert to BE first, since the underlying routines require BE data
                        let big_endians = val
                            .iter()
                            .map(|v| {
                                zerocopy::byteorder::U64::<zerocopy::byteorder::BigEndian>::new(*v)
                            })
                            .collect::<Vec<_>>();

                        new_builder
                            .add_prop_array(
                                $ids.proplist,
                                big_endians
                                    .iter()
                                    .map(|v| v.as_bytes())
                                    .collect::<Vec<_>>()
                                    .as_slice(),
                            )
                            .unwrap()
                    }
                };
            }

            new_builder
        }};
    }

    impl Dt {
        fn build_fdt(&self) -> Vec<u8> {
            let mut buf = vec![0; 4096 * 256];
            let memory_reservations = vec![ReserveEntry {
                address: 1024.into(),
                size: 2048.into(),
            }];
            let mut builder = Builder::new(BuilderConfig {
                blob_buffer: buf.as_mut_slice(),
                string_table_cap: 1024,
                memory_reservations: &memory_reservations,
            })
            .unwrap();

            let ids = PropIds {
                propa: builder.add_string("prop-a").unwrap(),
                propb: builder.add_string("test,prop-b").unwrap(),
                reg: builder.add_string("reg").unwrap(),
                saprop: builder.add_string("Awesome,super-prop").unwrap(),
                proplist: builder.add_string("prop-list").unwrap(),
            };

            // build root
            let root = &self.root;
            let mut root_builder = build_fdt_props!(&ids, root, builder);

            // build L1 nodes
            for child in &root.children {
                let mut child_builder = build_fdt_props!(&ids, child, root_builder);

                // Build L2 nodes
                for child_l2 in &child.children {
                    child_builder = build_fdt_props!(&ids, child_l2, child_builder)
                        .end_node()
                        .unwrap();

                    assert!(child_l2.children.is_empty());
                }

                root_builder = child_builder.end_node().unwrap();
            }

            let builder = root_builder.end_node().unwrap();

            let len = builder.build(self.boot_cpuid_phys).unwrap();
            buf.truncate(len);
            buf
        }

        fn from_fdt(buf: &[u8]) -> Self {
            let parser = Parser::new(buf).unwrap();

            let parse_props = |parser: &Node<'_>, node: &mut DtNode| {
                for prop in parser.properties() {
                    let prop = prop.unwrap();
                    let name = prop.name;

                    let dt_prop = match name {
                        "prop-a" => DtProp::PropA(prop.read_u64(0).unwrap()),
                        "test,prop-b" => DtProp::PropB(prop.data.into()),
                        "reg" => DtProp::Reg(prop.read_u32(0).unwrap()),
                        "Awesome,super-prop" => {
                            DtProp::SuperAwesomeProp(prop.read_str().unwrap().into())
                        }
                        "prop-list" => {
                            let mut list = vec![];
                            for val in prop.as_64_list().unwrap() {
                                list.push(val);
                            }
                            DtProp::PropList(list)
                        }
                        _ => panic!("unexpected name {}", name),
                    };

                    node.properties.push(dt_prop);
                }
            };

            let root = parser.root().unwrap();
            let mut p_root = DtNode {
                name: root.name.into(),
                children: vec![],
                properties: vec![],
            };

            parse_props(&root, &mut p_root);

            for child in root.children() {
                let child = child.unwrap();

                let mut p_child = DtNode {
                    name: child.name.into(),
                    children: vec![],
                    properties: vec![],
                };

                parse_props(&child, &mut p_child);

                for child_l2 in child.children() {
                    let child_l2 = child_l2.unwrap();

                    let mut p_child_l2 = DtNode {
                        name: child_l2.name.into(),
                        children: vec![],
                        properties: vec![],
                    };

                    parse_props(&child_l2, &mut p_child_l2);

                    assert!(child_l2.children().next().is_none());

                    p_child.children.push(p_child_l2);
                }

                p_root.children.push(p_child);
            }

            let mut memory_reservations = vec![];
            parser.memory_reservations().for_each(|entry| {
                memory_reservations.push(entry.unwrap());
            });

            Dt {
                boot_cpuid_phys: parser.boot_cpuid_phys,
                root: p_root,
                memory_reservations,
            }
        }
    }

    fn cpu_node(num: usize, apic_id: u32) -> DtNode {
        DtNode {
            name: format!("cpu@{}", num),
            properties: vec![DtProp::Reg(apic_id)],
            children: vec![],
        }
    }

    #[test]
    fn test_simple_dt() {
        let dt = Dt {
            boot_cpuid_phys: 0,
            root: DtNode {
                name: "".into(),
                children: vec![DtNode {
                    name: "cpus".into(),
                    children: (0..10).map(|i| cpu_node(i, (i + 10) as u32)).collect(),
                    properties: vec![DtProp::SuperAwesomeProp("super".into())],
                }],
                properties: vec![
                    DtProp::PropA(0x123456789abcdef),
                    DtProp::PropB(vec![]),
                    DtProp::PropB(vec![1]),
                    DtProp::Reg(0xabcdef),
                    DtProp::SuperAwesomeProp("this is a string!".into()),
                    DtProp::PropList(vec![1, 2, 3, 4, 5]),
                    DtProp::PropA(0x223456789abcdef),
                ],
            },
            memory_reservations: vec![ReserveEntry {
                address: 1024.into(),
                size: 2048.into(),
            }],
        };

        let fdt = dt.build_fdt();
        let parsed_dt = Dt::from_fdt(&fdt);
        assert_eq!(dt, parsed_dt);
    }
}