fast_select/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! A mechanism for efficiently selecting between futures.
//!
//! In async code, it is common to select between the completion of two or more
//! futures. In this case, a naive implementation of select will poll each
//! future during each wakeup. If the poll functions are expensive (because they
//! takes locks, makes syscalls, or otherwise performs some computationally
//! expensive task), then this can contribute to performance problems,
//! especially in heavily-nested async code.
//!
//! This crate contains an [implementation of select](FastSelect::select) that
//! constructs a separate waker for each alternative future, allowing `select`'s
//! poll implementation to identify exactly which futures are ready to be
//! polled.

// UNSAFETY: Using unchecked raw Arc, Pin, and Waker APIs.
#![expect(unsafe_code)]

use parking_lot::Mutex;
use std::future::Future;
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::ops::Deref;
use std::pin::Pin;
use std::pin::pin;
use std::sync::Arc;
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering;
use std::task::Context;
use std::task::Poll;
use std::task::RawWaker;
use std::task::RawWakerVTable;
use std::task::Waker;

/// An object that can be used to efficiently select over alternative futures.
///
/// This allocates storage used by calls to [`select`](Self::select). Be careful
/// to preallocate any instances of this outside the hot path.
///
/// # Example
///
/// ```rust
/// # use futures::StreamExt;
/// # use futures::executor::block_on;
/// # use futures::channel::mpsc::unbounded;
/// # use fast_select::FastSelect;
/// # block_on(async {
/// let mut fast_select = FastSelect::new();
/// let (_cancel_send, mut cancel_recv) = unbounded::<()>();
/// loop {
///     let operation = async {
///         Some(5)
///     };
///     let cancelled = async {
///         let _ = cancel_recv.next().await;
///         None
///     };
///     if let Some(value) = fast_select.select((operation, cancelled)).await {
///         break value;
///     }
/// }
/// # });
/// ```
///
/// In cases where one future is much more common than the others, you can leave
/// that future out and use a traditional select macro or function to select
/// between the common future and the tuple with the remaining futures. This may
/// even be a tuple of length one. In this case, the common future will be
/// polled every iteration, while the uncommon futures will be only polled as
/// necessary.
///
/// For example:
///
/// ```rust
/// # use futures::FutureExt;
/// # use futures::executor::block_on;
/// # use std::future::pending;
/// # use fast_select::FastSelect;
/// # block_on(async {
/// let mut fast_select = FastSelect::new();
/// futures::select_biased! {
///     value = async { 5u32 }.fuse() => {
///         println!("{}", value);
///     }
///     _ = fast_select.select((pending::<u32>(),)).fuse() => {
///         unreachable!()
///     }
/// }
/// # });
/// ```
#[derive(Default, Debug)]
pub struct FastSelect {
    state: Arc<State>,
}

#[derive(Debug)]
struct SelectPoll<'a, T> {
    poll_state: PollState<'a>,
    futures: T,
}

impl FastSelect {
    /// Creates a new [`FastSelect`].
    pub fn new() -> Self {
        Default::default()
    }

    /// Selects between the futures in tuple `futures`.
    ///
    /// Returns the output of the first one that completes. All the other
    /// futures are dropped without being completed.
    ///
    /// The futures are polled in the order they are specified in the tuple, so
    /// there is a bias for earlier ones in the tuple.
    pub async fn select<T: Select>(&mut self, futures: T) -> T::Output {
        assert!(T::COUNT <= 32);

        SelectPoll {
            poll_state: PollState {
                state: &self.state,
                last_waker: Default::default(),
                poll: (1u32 << (T::COUNT % 32)).wrapping_sub(1),
            },
            futures: pin!(futures),
        }
        .await
    }
}

impl<T: Select> Future for SelectPoll<'_, Pin<&mut T>> {
    type Output = T::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.get_mut();
        this.futures.as_mut().poll_select(cx, &mut this.poll_state)
    }
}

#[doc(hidden)]
#[derive(Debug)]
pub struct PollState<'a> {
    state: &'a Arc<State>,
    last_waker: LastWaker,
    poll: u32,
}

impl PollState<'_> {
    fn refill(&mut self, cx: &mut Context<'_>) -> Poll<()> {
        while self.poll == 0 {
            if self.state.poll.load(Ordering::Relaxed) != 0 {
                self.poll = self.state.poll.swap(0, Ordering::Acquire);
            }
            if self.poll != 0 {
                // The waker in `state` was probably taken and dropped.
                self.last_waker.clear();
            } else {
                if let Some(waker) = self.last_waker.update_waker(cx) {
                    // Update the locked waker and loop around to check
                    // `state.poll` again.
                    *self.state.waker.lock() = Some(waker);
                } else {
                    // The waker is up to date, so do nothing.
                    return Poll::Pending;
                }
            }
        }
        Poll::Ready(())
    }
}

/// A sealed trait for tuple types that can be selected over with
/// [`FastSelect`].
pub trait Select: private::Sealed {
    #[doc(hidden)]
    /// The number of elements in the tuple.
    const COUNT: usize;
    #[doc(hidden)]
    /// The output type of the tuple futures.
    type Output;

    #[doc(hidden)]
    fn poll_select(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        state: &mut PollState<'_>,
    ) -> Poll<Self::Output>;
}

mod private {
    pub trait Sealed {}
}

macro_rules! gen_future {
    ( $count:expr, $(($t:tt, $n:tt)),* ) => {
        impl<R, $($t: Future<Output = R>,)*> private::Sealed for ($($t,)*) {}

        impl<R, $($t: Future<Output = R>,)*> Select for ($($t,)*) {
            const COUNT: usize = $count;
            type Output = R;

            fn poll_select(self: Pin<&mut Self>, cx: &mut Context<'_>, state: &mut PollState<'_>) -> Poll<R> {
                // SAFETY: unpinning in order to re-pin each tuple element one
                // at a time. This is safe because each element is only accessed
                // via a pinned pointer.
                let this = unsafe { self.get_unchecked_mut() };
                loop {
                    std::task::ready!(state.refill(cx));
                    $(
                    if state.poll & (1<<$n) != 0 {
                        state.poll &= !(1<<$n);
                        // SAFETY: repinning as described above.
                        if let Poll::Ready(r) = unsafe { Pin::new_unchecked(&mut this.$n) }
                            .poll(&mut Context::from_waker(&state.state.waker_ref($n)))
                        {
                            return Poll::Ready(r);
                        }
                    }
                    )*
                }
            }
        }
    };
}

gen_future!(1, (T0, 0));
gen_future!(2, (T0, 0), (T1, 1));
gen_future!(3, (T0, 0), (T1, 1), (T2, 2));
gen_future!(4, (T0, 0), (T1, 1), (T2, 2), (T3, 3));
gen_future!(5, (T0, 0), (T1, 1), (T2, 2), (T3, 3), (T4, 4));
gen_future!(6, (T0, 0), (T1, 1), (T2, 2), (T3, 3), (T4, 4), (T5, 5));

#[derive(Debug, Default)]
struct LastWaker {
    last_waker: Option<RawWaker>,
}

// SAFETY: LastWaker contains a RawWaker (which is not inherently Send/Sync),
// but it is used only for comparisons.
unsafe impl Send for LastWaker {}
// SAFETY: LastWaker contains a RawWaker (which is not inherently Send/Sync),
// but it is used only for comparisons.
unsafe impl Sync for LastWaker {}

fn raw_waker_copy(waker: &Waker) -> RawWaker {
    // FUTURE: use Waker::as_raw and RawWaker::{data, vtable} once stabilized to
    // avoid unsafe here.
    //
    // SAFETY: Waker is repr(transparent) over RawWaker. RawWaker is safe to
    // copy because it is just a wrapper around two pointers, and it has no Drop
    // implementation.
    unsafe { std::ptr::from_ref(waker).cast::<RawWaker>().read() }
}

impl LastWaker {
    fn clear(&mut self) {
        self.last_waker = None;
    }

    fn update_waker(&mut self, cx: &Context<'_>) -> Option<Waker> {
        if self.last_waker == Some(raw_waker_copy(cx.waker())) {
            return None;
        }
        let waker = cx.waker().clone();
        self.last_waker = Some(raw_waker_copy(&waker));
        Some(waker)
    }
}

#[repr(C, align(4))]
#[derive(Default, Debug)]
struct State {
    poll: AtomicU32,
    waker: Mutex<Option<Waker>>,
}

impl State {
    fn wake(&self, i: usize) {
        let old = self.poll.fetch_or(1 << i, Ordering::Release);
        if old == 0 {
            let waker = self.waker.lock().take();
            if let Some(waker) = waker {
                waker.wake();
            }
        }
    }

    /// Gets the pointer and wake index from the data pointer.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that `data` is a valid pointer into an `Arc<State>`.
    unsafe fn from_ptr(data: *const ()) -> (ManuallyDrop<Arc<Self>>, usize) {
        let align_mask = align_of::<Self>() - 1;
        let i = (data as usize) & align_mask;
        let this = (data as usize & !align_mask) as *const Self;
        // SAFETY: caller guarantees that this is a valid reference.
        let this = unsafe { Arc::from_raw(this) };
        (ManuallyDrop::new(this), i)
    }

    /// # Safety
    ///
    /// The caller must guarantee that `data` is a valid pointer into an `Arc<State>`.
    unsafe fn clone_fn(data: *const ()) -> RawWaker {
        // SAFETY: caller guarantees this is a valid data pointer.
        let (this, _) = unsafe { Self::from_ptr(data) };
        let _ = Arc::into_raw(Arc::clone(&this));
        RawWaker::new(
            data,
            &RawWakerVTable::new(
                Self::clone_fn,
                Self::wake_fn,
                Self::wake_by_ref_fn,
                Self::drop_fn,
            ),
        )
    }

    /// # Safety
    ///
    /// The caller must guarantee that `data` is a valid pointer into an `Arc<State>`.
    unsafe fn wake_fn(data: *const ()) {
        // SAFETY: caller guarantees this is a valid data pointer.
        let (this, i) = unsafe { Self::from_ptr(data) };
        let this = ManuallyDrop::into_inner(this);
        this.wake(i);
    }

    /// # Safety
    ///
    /// The caller must guarantee that `data` is a valid pointer into an `Arc<State>`.
    unsafe fn wake_by_ref_fn(data: *const ()) {
        // SAFETY: caller guarantees this is a valid data pointer.
        let (this, i) = unsafe { Self::from_ptr(data) };
        this.wake(i);
    }

    /// # Safety
    ///
    /// The caller must guarantee that `data` is a valid pointer into an `Arc<State>`.
    unsafe fn drop_fn(data: *const ()) {
        // SAFETY: caller guarantees this is a valid data pointer.
        let (this, _) = unsafe { Self::from_ptr(data) };
        drop(ManuallyDrop::into_inner(this));
    }

    fn waker_ref<'a>(self: &'a Arc<Self>, i: usize) -> WakerRef<'a> {
        let data = ((Arc::as_ptr(self) as usize) | i) as *const ();
        let waker = RawWaker::new(
            data,
            &RawWakerVTable::new(
                Self::clone_fn,
                Self::wake_by_ref_fn,
                Self::wake_by_ref_fn,
                |_| (),
            ),
        );
        // SAFETY: the vtable methods implement the waker contract.
        let waker = unsafe { Waker::from_raw(waker) };
        WakerRef {
            waker,
            _phantom: PhantomData,
        }
    }
}

struct WakerRef<'a> {
    waker: Waker,
    _phantom: PhantomData<&'a ()>,
}

impl Deref for WakerRef<'_> {
    type Target = Waker;

    fn deref(&self) -> &Self::Target {
        &self.waker
    }
}

#[cfg(test)]
mod tests {
    use crate::FastSelect;
    use pal_async::DefaultDriver;
    use pal_async::async_test;
    use pal_async::timer::PolledTimer;
    use std::future::pending;
    use std::time::Duration;

    #[async_test]
    async fn test_foo(driver: DefaultDriver) {
        let mut select = FastSelect::new();
        let mut timer = PolledTimer::new(&driver);
        select
            .select((pending(), pending(), timer.sleep(Duration::from_millis(30))))
            .await;
    }
}