disk_striped/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implements the [`DiskIo`] trait for virtual disks backed by multiple raw
//! block devices.

#![expect(missing_docs)]
#![forbid(unsafe_code)]

use async_trait::async_trait;
use disk_backend::Disk;
use disk_backend::DiskError;
use disk_backend::DiskIo;
use disk_backend::UnmapBehavior;
use disk_backend::resolve::ResolveDiskParameters;
use disk_backend::resolve::ResolvedDisk;
use disk_backend_resources::StripedDiskHandle;
use futures::future::join_all;
use futures::future::try_join_all;
use inspect::Inspect;
use scsi_buffers::RequestBuffers;
use std::fmt::Debug;
use thiserror::Error;
use vm_resource::AsyncResolveResource;
use vm_resource::ResourceResolver;
use vm_resource::declare_static_async_resolver;
use vm_resource::kind::DiskHandleKind;

pub struct StripedDiskResolver;
declare_static_async_resolver!(StripedDiskResolver, (DiskHandleKind, StripedDiskHandle));

#[async_trait]
impl AsyncResolveResource<DiskHandleKind, StripedDiskHandle> for StripedDiskResolver {
    type Output = ResolvedDisk;
    type Error = anyhow::Error;

    async fn resolve(
        &self,
        resolver: &ResourceResolver,
        rsrc: StripedDiskHandle,
        input: ResolveDiskParameters<'_>,
    ) -> Result<Self::Output, Self::Error> {
        let disks = try_join_all(
            rsrc.devices
                .into_iter()
                .map(async |device| resolver.resolve(device, input).await.map(|r| r.0)),
        )
        .await?;
        Ok(ResolvedDisk::new(StripedDisk::new(
            disks,
            rsrc.chunk_size_in_bytes,
            rsrc.logic_sector_count,
        )?)?)
    }
}

#[derive(Debug, Inspect)]
pub struct StripedDisk {
    #[inspect(iter_by_index)]
    block_devices: Vec<Disk>,
    sector_size: u32,
    sector_shift: u32,
    sector_count: u64,
    read_only: bool,
    sector_count_per_chunk: u32,
    unmap_behavior: UnmapBehavior,
}

const CHUNK_SIZE_128K: u32 = 128 * 1024;

#[derive(Error, Debug)]
pub enum NewDeviceError {
    #[error("Can't create a striping disk since the input device list is empty")]
    EmptyDeviceList,
    #[error(
        "The files are not compatible to form a striping disk: sector_size-{sector_size} != cur_sector_size-{cur_sector_size} OR sector_count-{sector_count} != cur_sector_count-{cur_sector_count}"
    )]
    DeviceNotCompatible {
        sector_size: u32,
        cur_sector_size: u32,
        sector_count: u64,
        cur_sector_count: u64,
    },
    #[error(
        "Invalid chunk size: chunk_size_in_bytes-{0} is not multiple of logical_sector_size-{1}"
    )]
    InvalidChunkSize(u32, u32),
    #[error(
        "logic_sector_count is out of range: logic_sector_count.unwrap_or(total_sector_count)-{0} > total_sector_count-{1}"
    )]
    InvalidLogicSectorCount(u64, u64),
    #[error(
        "The striping disk size must be multiple of chunk size * number of disks. logic_sector_count-{0} != {1}."
    )]
    InvalidStripingDiskSize(u64, u64),
}

#[derive(Debug, Error)]
enum IoError {
    #[error("cur_buf_offset-{cur_buf_offset} != buf_total_size -{buf_total_size}")]
    InternalErrorBufferLengthMismatch {
        cur_buf_offset: usize,
        buf_total_size: usize,
    },
    #[error("trimmed_sectors-{trimmed_sectors} != sector_count -{sector_count}")]
    InternalErrorTrimLengthMismatch {
        trimmed_sectors: u64,
        sector_count: u64,
    },
    #[error(
        "Sector out of range: start_sector-{start_sector}, end_sector-{end_sector}, self.sector_count-{disk_sector_count}"
    )]
    IOInvalidSector {
        start_sector: u64,
        end_sector: u64,
        disk_sector_count: u64,
    },
    #[error("error in lower disk {index}")]
    LowerError {
        index: usize,
        #[source]
        err: DiskError,
    },
}

impl From<IoError> for DiskError {
    fn from(err: IoError) -> Self {
        DiskError::Io(std::io::Error::new(std::io::ErrorKind::Other, err))
    }
}

struct Chunk {
    // The index of the disk where the chunk is in.
    disk_index: usize,
    // The chunk starting sector and offset on the disk.
    disk_sector_index: u64,
    // The chunk length. It can be less the sector_count_per_chunk for the first and last chunk.
    chunk_length_in_sectors: u32,
}

#[derive(Debug, Clone)]
struct ChunkIter {
    disk_count: usize,
    sector_count_per_chunk: u32,
    start_sector: u64,
    end_sector: u64,
    start_chunk_index: u64,
    end_chunk_index: u64,
    cur_chunk_index: u64,
}

impl Iterator for ChunkIter {
    type Item = Chunk;

    fn next(&mut self) -> Option<Chunk> {
        // The valid range is [start_chunk_index, end_chunk_index).
        assert!(
            self.cur_chunk_index >= self.start_chunk_index,
            "self.cur_chunk_index-[{}] < self.start_chunk_index-[{}] should never happen.",
            self.cur_chunk_index,
            self.start_chunk_index
        );

        if self.cur_chunk_index >= self.end_chunk_index {
            return None;
        }

        // The sector can be in middle of a chunk for the first chunk.
        let sector_offset_in_chunk = if self.cur_chunk_index == self.start_chunk_index {
            self.start_sector % self.sector_count_per_chunk as u64
        } else {
            0
        };

        let disk_index = (self.cur_chunk_index % (self.disk_count as u64)) as usize;
        let disk_sector_index = (self.cur_chunk_index / self.disk_count as u64)
            * self.sector_count_per_chunk as u64
            + sector_offset_in_chunk;

        // The disk end offset can be in middle of the chunk for the last chunk.
        let disk_end_offset_in_sectors = (self.cur_chunk_index / self.disk_count as u64)
            * self.sector_count_per_chunk as u64
            + if self.cur_chunk_index == self.end_chunk_index - 1 {
                self.end_sector - self.sector_count_per_chunk as u64 * self.cur_chunk_index
            } else {
                self.sector_count_per_chunk as u64
            };

        // The chunk length can be less the sector_count_per_chunk for the first and last chunk.
        let chunk_length_in_sectors = (disk_end_offset_in_sectors - disk_sector_index) as u32;

        self.cur_chunk_index += 1;

        Some(Chunk {
            disk_index,
            disk_sector_index,
            chunk_length_in_sectors,
        })
    }
}

impl StripedDisk {
    fn get_chunk_iter(&self, start_sector: u64, end_sector: u64) -> Result<ChunkIter, DiskError> {
        // The valid range is [start_sector, end_sector).
        if end_sector > self.sector_count {
            let err = IoError::IOInvalidSector {
                start_sector,
                end_sector,
                disk_sector_count: self.sector_count,
            };
            tracelimit::error_ratelimited!(err = ?err);
            return Err(err.into());
        }

        let start_chunk_index = start_sector / self.sector_count_per_chunk as u64;
        let end_chunk_index = end_sector.div_ceil(self.sector_count_per_chunk as u64);

        let chunk_iter = ChunkIter {
            disk_count: self.block_devices.len(),
            sector_count_per_chunk: self.sector_count_per_chunk,
            start_sector,
            end_sector,
            start_chunk_index,
            end_chunk_index,
            cur_chunk_index: start_chunk_index,
        };

        Ok(chunk_iter)
    }
}

impl StripedDisk {
    /// Constructs a new `StripedDisk` backed by the vector of file.
    ///
    /// # Arguments
    /// * `devices` - The backing devices opened for raw access.
    /// * 'chunk_size_in_bytes' - The chunk size of the striped disk, and the default value is 128K.
    /// * 'logic_sector_count' - The sector count of the striped disk, and the default value is the sum of the sector count of the backing devices.
    ///
    pub fn new(
        devices: Vec<Disk>,
        chunk_size_in_bytes: Option<u32>,
        logic_sector_count: Option<u64>,
    ) -> Result<Self, NewDeviceError> {
        if devices.is_empty() {
            return Err(NewDeviceError::EmptyDeviceList);
        }

        let mut total_sector_count = 0;
        let sector_size = devices[0].sector_size();
        let sector_count = devices[0].sector_count();
        let read_only = devices[0].is_read_only();
        let chunk_size_in_bytes = chunk_size_in_bytes.unwrap_or(CHUNK_SIZE_128K);
        if chunk_size_in_bytes % sector_size != 0 {
            return Err(NewDeviceError::InvalidChunkSize(
                chunk_size_in_bytes,
                sector_size,
            ));
        }

        let sector_count_per_chunk = (chunk_size_in_bytes / sector_size) as u64;

        for device in &devices {
            let cur_sector_size = device.sector_size();
            let cur_sector_count = device.sector_count();
            let cur_read_only = device.is_read_only();

            if sector_size != cur_sector_size
                || sector_count != cur_sector_count
                || read_only != cur_read_only
            {
                return Err(NewDeviceError::DeviceNotCompatible {
                    sector_size,
                    cur_sector_size,
                    sector_count,
                    cur_sector_count,
                });
            }

            total_sector_count +=
                (cur_sector_count / sector_count_per_chunk) * sector_count_per_chunk;
        }

        if total_sector_count % (devices.len() as u64 * sector_count_per_chunk) != 0 {
            return Err(NewDeviceError::InvalidStripingDiskSize(
                total_sector_count,
                devices.len() as u64 * sector_count_per_chunk,
            ));
        }

        let logic_sector_count = logic_sector_count.unwrap_or(total_sector_count);
        if logic_sector_count > total_sector_count {
            return Err(NewDeviceError::InvalidLogicSectorCount(
                logic_sector_count,
                total_sector_count,
            ));
        }

        if logic_sector_count % (devices.len() as u64 * sector_count_per_chunk) != 0 {
            return Err(NewDeviceError::InvalidStripingDiskSize(
                logic_sector_count,
                devices.len() as u64 * sector_count_per_chunk,
            ));
        }

        // Unify the unmap behavior of all devices. If all disks specify the
        // same behavior, use it. Otherwise, report unspecified behavior and
        // send unmap to all disks.
        let unmap_behavior = devices.iter().fold(UnmapBehavior::Zeroes, |rest, d| {
            match (rest, d.unmap_behavior()) {
                (UnmapBehavior::Zeroes, UnmapBehavior::Zeroes) => UnmapBehavior::Zeroes,
                (UnmapBehavior::Ignored, UnmapBehavior::Ignored) => UnmapBehavior::Ignored,
                _ => UnmapBehavior::Unspecified,
            }
        });

        let stripped_block_device = StripedDisk {
            block_devices: devices,
            sector_size,
            sector_shift: sector_size.trailing_zeros(),
            sector_count: logic_sector_count,
            read_only,
            sector_count_per_chunk: (sector_count_per_chunk as u32),
            unmap_behavior,
        };

        tracing::info!("stripped block device start completed.");
        Ok(stripped_block_device)
    }
}

impl DiskIo for StripedDisk {
    fn disk_type(&self) -> &str {
        "striped"
    }

    fn sector_count(&self) -> u64 {
        self.sector_count
    }

    fn sector_size(&self) -> u32 {
        self.sector_size
    }

    fn is_read_only(&self) -> bool {
        self.read_only
    }

    fn disk_id(&self) -> Option<[u8; 16]> {
        None
    }

    fn physical_sector_size(&self) -> u32 {
        self.block_devices
            .iter()
            .map(|d| d.physical_sector_size())
            .max()
            .unwrap()
    }

    fn is_fua_respected(&self) -> bool {
        self.block_devices.iter().all(|d| d.is_fua_respected())
    }

    async fn eject(&self) -> Result<(), DiskError> {
        let mut futures = Vec::new();
        for disk in &self.block_devices {
            futures.push(disk.eject());
        }
        await_all_and_check(futures).await?;
        Ok(())
    }

    async fn read_vectored(
        &self,
        buffers: &RequestBuffers<'_>,
        start_sector: u64,
    ) -> Result<(), DiskError> {
        let buf_total_size = buffers.len();
        let end_sector = start_sector + ((buf_total_size as u64) >> self.sector_shift);
        if end_sector > self.sector_count {
            return Err(DiskError::IllegalBlock);
        }
        let chunk_iter = self.get_chunk_iter(start_sector, end_sector)?;

        let mut all_futures = Vec::new();
        let mut cur_buf_offset: usize = 0;

        for chunk in chunk_iter {
            let disk = &self.block_devices[chunk.disk_index];

            let buf_len = (chunk.chunk_length_in_sectors as usize) << self.sector_shift;

            let sub_buffers = buffers.subrange(cur_buf_offset, buf_len);
            cur_buf_offset += buf_len;

            all_futures.push(async move {
                disk.read_vectored(&sub_buffers, chunk.disk_sector_index)
                    .await
                    .map_err(|err| IoError::LowerError {
                        index: chunk.disk_index,
                        err,
                    })
            });
        }

        if cur_buf_offset != buf_total_size {
            return Err(IoError::InternalErrorBufferLengthMismatch {
                cur_buf_offset,
                buf_total_size,
            }
            .into());
        }

        await_all_and_check(all_futures).await?;
        Ok(())
    }

    async fn write_vectored(
        &self,
        buffers: &RequestBuffers<'_>,
        start_sector: u64,
        fua: bool,
    ) -> Result<(), DiskError> {
        let buf_total_size = buffers.len();
        let end_sector = start_sector + ((buf_total_size as u64) >> self.sector_shift);
        if end_sector > self.sector_count {
            return Err(DiskError::IllegalBlock);
        }
        let chunk_iter = self.get_chunk_iter(start_sector, end_sector)?;

        let mut all_futures = Vec::new();
        let mut cur_buf_offset: usize = 0;

        for chunk in chunk_iter {
            let disk = &self.block_devices[chunk.disk_index];

            let buf_len = (chunk.chunk_length_in_sectors as usize) << self.sector_shift;

            let sub_buffers = buffers.subrange(cur_buf_offset, buf_len);
            cur_buf_offset += buf_len;

            all_futures.push(async move {
                disk.write_vectored(&sub_buffers, chunk.disk_sector_index, fua)
                    .await
                    .map_err(|err| IoError::LowerError {
                        index: chunk.disk_index,
                        err,
                    })
            });
        }

        if cur_buf_offset != buf_total_size {
            return Err(IoError::InternalErrorBufferLengthMismatch {
                cur_buf_offset,
                buf_total_size,
            }
            .into());
        }

        await_all_and_check(all_futures).await?;
        Ok(())
    }

    async fn sync_cache(&self) -> Result<(), DiskError> {
        let mut all_futures = Vec::new();
        for (disk_index, disk) in self.block_devices.iter().enumerate() {
            all_futures.push(async move {
                disk.sync_cache().await.map_err(|err| IoError::LowerError {
                    index: disk_index,
                    err,
                })
            });
        }
        await_all_and_check(all_futures).await?;
        Ok(())
    }

    async fn unmap(
        &self,
        start_sector: u64,
        sector_count: u64,
        block_level_only: bool,
    ) -> Result<(), DiskError> {
        let end_sector = start_sector + sector_count;

        if end_sector > self.sector_count {
            return Err(DiskError::IllegalBlock);
        }

        let chunk_iter = match self.get_chunk_iter(start_sector, end_sector) {
            Ok(iter) => iter,
            Err(err) => {
                return Err(err);
            }
        };

        // Create a vector to group chunks by disk index
        let mut disk_sectors: Vec<(u64, u64)> = vec![(0, 0); self.block_devices.len()];
        let mut trimmed_sectors: u64 = 0;

        for chunk in chunk_iter {
            let start = chunk.disk_sector_index;
            let length = chunk.chunk_length_in_sectors as u64;
            let (disk_start, disk_len) = &mut disk_sectors[chunk.disk_index];
            if *disk_len == 0 {
                *disk_start = start; // set the start of the unmap operation
            }
            *disk_len += length; // add the length to the total

            trimmed_sectors += length;
        }

        if trimmed_sectors != sector_count {
            return Err(IoError::InternalErrorTrimLengthMismatch {
                trimmed_sectors,
                sector_count,
            }
            .into());
        }

        // Create a future for each disk's combined unmap operations
        let mut all_futures = Vec::new();

        for (disk_index, &(start, length)) in disk_sectors.iter().enumerate() {
            let disk = &self.block_devices[disk_index];
            // Check if the length is non-zero before pushing to all_futures
            if length > 0 {
                all_futures.push(async move { disk.unmap(start, length, block_level_only).await });
            }
        }
        await_all_and_check(all_futures).await?;
        Ok(())
    }

    fn unmap_behavior(&self) -> UnmapBehavior {
        self.unmap_behavior
    }

    fn optimal_unmap_sectors(&self) -> u32 {
        self.block_devices
            .iter()
            .map(|disk| disk.optimal_unmap_sectors())
            .max()
            .unwrap_or(1)
    }
}

async fn await_all_and_check<T, E>(futures: T) -> Result<(), E>
where
    T: IntoIterator,
    T::Item: core::future::Future<Output = Result<(), E>>,
{
    // Use join_all to wait for all IOs even if one fails. This is necessary to
    // avoid dropping IOs while they are in flight.
    let results = join_all(futures).await;
    for result in results {
        result?;
    }
    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;
    use guestmem::GuestMemory;
    use hvdef::HV_PAGE_SIZE;
    use pal_async::async_test;
    use scsi_buffers::OwnedRequestBuffers;

    fn new_strip_device(
        disk_count: u8,
        disk_size_in_bytes: Option<u64>,
        chunk_size_in_bytes: Option<u32>,
        logic_sector_count: Option<u64>,
    ) -> StripedDisk {
        let mut devices = Vec::new();

        for _i in 0..disk_count {
            let ramdisk =
                disklayer_ram::ram_disk(disk_size_in_bytes.unwrap_or(1024 * 1024 * 64), false)
                    .unwrap();
            devices.push(ramdisk);
        }

        StripedDisk::new(devices, chunk_size_in_bytes, logic_sector_count).unwrap()
    }

    fn create_guest_mem(size: usize) -> GuestMemory {
        let mem = GuestMemory::allocate(size);

        let mut index: usize = 0;
        while index < size - 3 {
            mem.write_at(
                index as u64,
                &[
                    (index % 255) as u8,
                    ((index >> 8) % 255) as u8,
                    ((index >> 16) % 255) as u8,
                    ((index >> 24) % 255) as u8,
                ],
            )
            .unwrap();

            index += 4;
        }

        mem
    }

    async fn validate_async_striping_disk_ios(
        disk: &StripedDisk,
        start_sectors: &[u64],
        offset: &[usize],
        length: usize,
        write_gpns: &[u64],
        read_gpns: &[u64],
    ) {
        for (start_sector, offset) in start_sectors.iter().zip(offset) {
            validate_async_striping_disk_io(
                disk,
                *start_sector,
                *offset,
                length,
                write_gpns,
                read_gpns,
            )
            .await;
        }
    }

    /// Validate the async strip disk I/O.
    ///
    /// # Arguments
    /// * `disk` - The strip block device.
    /// * `start_sector` - The sector index where the I/O shall start.
    /// * `offset` - The I/O buffer offset.
    /// * `length` - The total I/O length.
    /// * `write_gpns` - The write GPN index.
    /// * `read_gpns` - The read GPN index.
    ///
    async fn validate_async_striping_disk_io(
        disk: &StripedDisk,
        start_sector: u64,
        offset: usize,
        length: usize,
        write_gpns: &[u64],
        read_gpns: &[u64],
    ) {
        let page_count = (offset + length).div_ceil(HV_PAGE_SIZE as usize);
        // Create continuous guest memory pages and initialize them with random data.
        let guest_mem = create_guest_mem(page_count * 2 * HV_PAGE_SIZE as usize);
        assert_eq!(write_gpns.len(), page_count);
        assert_eq!(read_gpns.len(), page_count);

        // Get the write buffer from guest memory, which has random data.
        let write_buffers = OwnedRequestBuffers::new_unaligned(write_gpns, offset, length);
        // Write the random data to disk.
        disk.write_vectored(&write_buffers.buffer(&guest_mem), start_sector, false)
            .await
            .unwrap();

        disk.sync_cache().await.unwrap();

        // Get the read buffer from guest memory, which has random data.
        let read_buffers = OwnedRequestBuffers::new_unaligned(read_gpns, offset, length);
        // Read the data from disk back to read buffers.
        disk.read_vectored(&read_buffers.buffer(&guest_mem), start_sector)
            .await
            .unwrap();

        // Validate if the source and target match.
        let mut source = vec![0u8; page_count * HV_PAGE_SIZE as usize];
        guest_mem.read_at(0, &mut source).unwrap();

        let mut target = vec![255u8; page_count * HV_PAGE_SIZE as usize];
        guest_mem
            .read_at(page_count as u64 * HV_PAGE_SIZE, &mut target)
            .unwrap();

        assert_eq!(
            source[offset..(offset + length - 1)],
            target[offset..(offset + length - 1)]
        );

        // async_trim test
        // Since the discard function doesn't trim the file content, the test doesn't check if the file content is ZERO after the trim.
        disk.unmap(
            start_sector,
            (length / disk.sector_size() as usize) as u64,
            true,
        )
        .await
        .unwrap();
    }

    #[async_test]
    async fn run_async_striping_disk_io() {
        // Create a striping disk with two disks, set the chunk size to 4K and total size to 256K.
        let disk = new_strip_device(2, Some(128 * 1024), Some(4096), None);
        assert_eq!(disk.sector_size, 512);
        assert_eq!(disk.sector_count_per_chunk, 4096 / 512);
        assert_eq!(disk.sector_count(), 128 * 1024 * 2 / 512);

        // Read 1K data from the beginning, middle, and end of the disk using paged aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 2],
            &[0, 0, 0],
            1024,
            &[0],
            &[1],
        )
        .await;

        // Read 512 bytes data from the beginning, middle, and end of the disk using aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 2],
            &[0, 0, 0],
            512,
            &[0],
            &[1],
        )
        .await;

        // Read 16K data from the beginning, middle, and end of the disk using paged aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 16, disk.sector_count() - 32],
            &[0, 0, 0],
            16 * 1024,
            &[0, 1, 2, 3],
            &[4, 5, 6, 7],
        )
        .await;

        // Read 512 bytes data from the beginning, middle, and end of the disk using un-aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 4],
            &[512, 513, 1028],
            512,
            &[0],
            &[1],
        )
        .await;

        // Read 5K data from the beginning, middle, and end of the disk using un-aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 5, disk.sector_count() - 10],
            &[512, 513, 1028],
            5 * 1024,
            &[0, 1],
            &[2, 3],
        )
        .await;
    }

    #[async_test]
    async fn run_async_128k_striping_disk_io() {
        // Create a striping disk with four disks, set the chunk size to 128K and total size to 4M.
        let disk = new_strip_device(4, Some(1024 * 1024), Some(128 * 1024), None);
        assert_eq!(disk.sector_size, 512);
        assert_eq!(disk.sector_count_per_chunk, 128 * 1024 / 512);
        assert_eq!(disk.sector_count(), 1024 * 1024 * 4 / 512);

        // Read 1K data from the beginning, middle, and end of the disk using paged aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 2],
            &[0, 0, 0],
            1024,
            &[0],
            &[1],
        )
        .await;

        // Read 512 bytes data from the beginning, middle, and end of the disk using aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 2],
            &[0, 0, 0],
            512,
            &[0],
            &[1],
        )
        .await;

        // Read 256K data from the beginning, middle, and end of the disk using paged aligned buffers.
        let mut write_gpns: [u64; 256 * 1024 / HV_PAGE_SIZE as usize] =
            [0; 256 * 1024 / HV_PAGE_SIZE as usize];
        for (i, write_gpn) in write_gpns.iter_mut().enumerate() {
            *write_gpn = i as u64;
        }

        let mut read_gpns: [u64; 256 * 1024 / HV_PAGE_SIZE as usize] =
            [0; 256 * 1024 / HV_PAGE_SIZE as usize];
        for (i, read_gpn) in read_gpns.iter_mut().enumerate() {
            *read_gpn = (i + write_gpns.len()) as u64;
        }

        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 256, disk.sector_count() - 512],
            &[0, 0, 0],
            256 * 1024,
            &write_gpns,
            &read_gpns,
        )
        .await;

        // Read 9K data from the beginning, middle, and end of the disk using un-aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 9, disk.sector_count() - 18],
            &[512, 513, 1028],
            9 * 1024,
            &[0, 1, 2],
            &[3, 4, 5],
        )
        .await;

        // Read 512 bytes data from the beginning, middle, and end of the disk using un-aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 4],
            &[512, 513, 1028],
            512,
            &[0],
            &[1],
        )
        .await;
    }

    #[async_test]
    async fn run_async_64k_striping_disk_io() {
        // Create a striping disk with thirty two disks, set the chunk size to 64K and total size to 32M.
        let disk = new_strip_device(32, Some(1024 * 1024), Some(64 * 1024), None);
        assert_eq!(disk.sector_size, 512);
        assert_eq!(disk.sector_count_per_chunk, 64 * 1024 / 512);
        assert_eq!(disk.sector_count(), 1024 * 1024 * 32 / 512);

        // Read 1K data from the beginning, middle, and end of the disk using paged aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 2],
            &[0, 0, 0],
            1024,
            &[0],
            &[1],
        )
        .await;

        // Read 512 bytes data from the beginning, middle, and end of the disk using aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 1],
            &[0, 0, 0],
            512,
            &[0],
            &[1],
        )
        .await;

        // Read 256K data from the beginning, middle, and end of the disk using paged aligned buffers.
        let mut write_gpns: [u64; 256 * 1024 / HV_PAGE_SIZE as usize] =
            [0; 256 * 1024 / HV_PAGE_SIZE as usize];
        for (i, write_gpn) in write_gpns.iter_mut().enumerate() {
            *write_gpn = i as u64;
        }

        let mut read_gpns: [u64; 256 * 1024 / HV_PAGE_SIZE as usize] =
            [0; 256 * 1024 / HV_PAGE_SIZE as usize];
        for (i, read_gpn) in read_gpns.iter_mut().enumerate() {
            *read_gpn = (i + write_gpns.len()) as u64;
        }

        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 256, disk.sector_count() - 512],
            &[0, 0, 0],
            256 * 1024,
            &write_gpns,
            &read_gpns,
        )
        .await;

        // Read 9K data from the beginning, middle, and end of the disk using un-aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 9, disk.sector_count() - 18],
            &[512, 513, 1028],
            9 * 1024,
            &[0, 1, 2],
            &[3, 4, 5],
        )
        .await;

        // Read 512 bytes data from the beginning, middle, and end of the disk using un-aligned buffers.
        validate_async_striping_disk_ios(
            &disk,
            &[0, disk.sector_count() / 2 - 1, disk.sector_count() - 4],
            &[512, 513, 1028],
            512,
            &[0],
            &[1],
        )
        .await;
    }

    #[async_test]
    async fn run_async_striping_disk_negative() {
        // Creating striping disk using incompatible files shall fail.
        let mut devices = Vec::new();
        for i in 0..2 {
            let ramdisk = disklayer_ram::ram_disk(1024 * 1024 + i * 64 * 1024, false).unwrap();
            devices.push(ramdisk);
        }

        match StripedDisk::new(devices, None, None) {
            Err(err) => {
                println!(
                    "Expected failure since underlying files are not compatible: {}",
                    err
                );
            }
            Ok(strip_disk) => panic!("{:?}", strip_disk),
        }

        // Creating striping disk using invalid chunk size shall fail.
        let mut block_devices = Vec::new();
        for _ in 0..2 {
            let ramdisk = disklayer_ram::ram_disk(1024 * 1024, false).unwrap();
            block_devices.push(ramdisk);
        }

        match StripedDisk::new(block_devices, Some(4 * 1024 + 1), None) {
            Err(err) => {
                println!("Expected failure since chunk size is invalid: {}", err);
            }
            Ok(strip_disk) => panic!("{:?}", strip_disk),
        }

        // Creating striping disk using invalid logic sector count shall fail.
        let mut block_devices = Vec::new();
        for _ in 0..2 {
            let ramdisk = disklayer_ram::ram_disk(1024 * 1024, false).unwrap();
            block_devices.push(ramdisk);
        }

        match StripedDisk::new(
            block_devices,
            Some(4 * 1024),
            Some(1024 * 1024 * 2 / 512 + 1),
        ) {
            Err(err) => {
                println!(
                    "Expected failure since logic sector count is invalid: {}",
                    err
                );
            }
            Ok(strip_disk) => panic!("{:?}", strip_disk),
        }

        // Create a simple striping disk.
        let mut block_devices = Vec::new();
        for _ in 0..2 {
            let ramdisk = disklayer_ram::ram_disk(1024 * 1024, false).unwrap();
            block_devices.push(ramdisk);
        }

        let disk = match StripedDisk::new(block_devices, Some(8 * 1024), None) {
            Err(err) => panic!("{}", err),
            Ok(strip_disk) => strip_disk,
        };

        assert_eq!(disk.sector_size, 512);
        assert_eq!(disk.sector_count_per_chunk, 8 * 1024 / 512);
        assert_eq!(disk.sector_count(), 1024 * 1024 * 2 / 512);

        // write 1 sector off shall be caught.
        let guest_mem = create_guest_mem(2 * HV_PAGE_SIZE as usize);
        let write_buffers = OwnedRequestBuffers::new(&[0]);
        let buf_sector_count = write_buffers.len().div_ceil(disk.sector_size as usize);
        match disk
            .write_vectored(
                &write_buffers.buffer(&guest_mem),
                disk.sector_count() - buf_sector_count as u64 + 1,
                false,
            )
            .await
        {
            Ok(_) => {
                panic!("{:?}", disk);
            }
            Err(err) => {
                println!("Expected write failure because of 1 sector off: {:?}", err);
            }
        }

        // read 1 sector off shall be caught.
        let guest_mem = create_guest_mem(2 * HV_PAGE_SIZE as usize);
        let read_buffers = OwnedRequestBuffers::new(&[1]);
        let buf_sector_count = read_buffers.len().div_ceil(disk.sector_size as usize);
        match disk
            .read_vectored(
                &write_buffers.buffer(&guest_mem),
                disk.sector_count() - buf_sector_count as u64 + 1,
            )
            .await
        {
            Ok(_) => {
                panic!("{:?}", disk);
            }
            Err(err) => {
                println!("Expected read failure because of 1 sector off: {:?}", err);
            }
        }

        match disk
            .unmap(
                (disk.sector_count() - 2) * disk.sector_size as u64,
                disk.sector_size as u64 * 3,
                true,
            )
            .await
        {
            Ok(_) => {
                panic!("{:?}", disk);
            }
            Err(err) => {
                println!("Expected failure because of 1 sector off: {:?}", err);
            }
        }

        // write 1 byte off shall be caught.
        let write_buffers =
            OwnedRequestBuffers::new_unaligned(&[0], 0, disk.sector_size as usize + 1);
        let buf_sector_count = write_buffers.len().div_ceil(disk.sector_size as usize);
        match disk
            .write_vectored(
                &write_buffers.buffer(&guest_mem),
                disk.sector_count() - buf_sector_count as u64 + 1,
                false,
            )
            .await
        {
            Ok(_) => {
                panic!("{:?}", disk);
            }
            Err(err) => {
                println!("Expected failure because of write 1 byte off: {:?}", err);
            }
        }

        // read 1 byte off shall be caught.
        let read_buffers =
            OwnedRequestBuffers::new_unaligned(&[1], 0, disk.sector_size as usize + 1);
        let buf_sector_count = read_buffers.len().div_ceil(disk.sector_size as usize);
        match disk
            .read_vectored(
                &read_buffers.buffer(&guest_mem),
                disk.sector_count() - buf_sector_count as u64 + 1,
            )
            .await
        {
            Ok(_) => {
                panic!("{:?}", disk);
            }
            Err(err) => {
                println!("Expected failure because of read 1 byte off: {:?}", err);
            }
        }

        match disk
            .unmap(
                (disk.sector_count() - 2) * disk.sector_size as u64,
                disk.sector_size as u64 * 2 + 1,
                true,
            )
            .await
        {
            Ok(_) => {
                panic!("{:?}", disk);
            }
            Err(err) => {
                println!("Expected failure because of 1 byte off: {:?}", err);
            }
        }
    }

    #[async_test]
    async fn run_async_striping_disk_unmap() {
        let disk = new_strip_device(2, Some(128 * 1024 * 1024), Some(4096), None);
        assert_eq!(disk.sector_size, 512);
        assert_eq!(disk.sector_count_per_chunk, 4096 / 512);
        assert_eq!(disk.sector_count(), 128 * 1024 * 1024 * 2 / 512); //sector_count =  524288
        disk.unmap(0, 1, false).await.unwrap();
        disk.unmap(0, 524288, false).await.unwrap();
        disk.unmap(8, 524280, false).await.unwrap();
        disk.unmap(disk.sector_count() / 2 - 512, 1024, false)
            .await
            .unwrap();
        disk.unmap(disk.sector_count() - 1024, 1024, false)
            .await
            .unwrap();
        disk.unmap(0, disk.sector_count() / 2, false).await.unwrap();
        disk.unmap(disk.sector_count() / 2, disk.sector_count() / 2, false)
            .await
            .unwrap();
        disk.unmap(disk.sector_count() / 2 - 500, 1000, false)
            .await
            .unwrap();
        //this one should fail, out of bounds
        assert!(disk.unmap(disk.sector_count(), 100, false).await.is_err());
        //unmap zero sector
        disk.unmap(1000, 0, false).await.unwrap();
    }
}