disk_layered/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! A layered disk implementation, [`LayeredDisk`].
//!
//! A layered disk is a disk composed of multiple layers. Each layer is a block
//! device made up of sectors, but with the added per-sector state of whether
//! the sector is present or not. When reading a sector, the layered disk will
//! read from the topmost layer that has the sector present. When writing, the
//! disk will write to the topmost layer.
//!
//! A layer can also have caching behavior. If a layer is configured to cache
//! reads, then sectors that are read from lower layers are written back to the
//! layer. If a layer is configured to write through, then writes are written to
//! the layer and the next layer. These can be useful to implement simple
//! persistent and non-persistent caches, primarily designed for lazily
//! populating local backing stores from remote sources.
//!
//! Missing from this implementation is write-back caching and cache eviction,
//! which would be needed for caches that are smaller than the disk. These
//! require potentially complicated cache management policies and are probably
//! best implemented in a separate disk implementation.
#![forbid(unsafe_code)]
mod bitmap;
pub mod resolve;
pub mod resolver;
pub use bitmap::SectorMarker;
use bitmap::Bitmap;
use disk_backend::Disk;
use disk_backend::DiskError;
use disk_backend::DiskIo;
use disk_backend::UnmapBehavior;
use guestmem::GuestMemory;
use guestmem::MemoryWrite;
use inspect::Inspect;
use scsi_buffers::OwnedRequestBuffers;
use scsi_buffers::RequestBuffers;
use std::convert::Infallible;
use std::future::Future;
use std::pin::Pin;
use thiserror::Error;
/// A disk composed of multiple layers.
#[derive(Inspect)]
pub struct LayeredDisk {
#[inspect(iter_by_index)]
layers: Vec<Layer>,
read_only: bool,
is_fua_respected: bool,
sector_shift: u32,
disk_id: Option<[u8; 16]>,
physical_sector_size: u32,
unmap_behavior: UnmapBehavior,
optimal_unmap_sectors: u32,
}
#[derive(Inspect)]
struct Layer {
backing: Box<dyn DynLayerIo>,
visible_sector_count: u64,
read_cache: bool,
write_through: bool,
}
/// A single layer which can be attached to a [`LayeredDisk`].
pub struct DiskLayer(Box<dyn DynLayerAttach>);
impl DiskLayer {
/// Creates a new layer from a backing store.
pub fn new<T: LayerAttach>(backing: T) -> Self {
Self(Box::new(backing))
}
/// Creates a layer from a disk. The resulting layer is always fully
/// present.
pub fn from_disk(disk: Disk) -> Self {
Self::new(DiskAsLayer(disk))
}
}
/// Metadata of a particular layer, collected from various [`LayerIo`] APIs.
#[derive(Clone)]
#[expect(missing_docs)] // self-explanatory names
pub struct DiskLayerMetadata {
pub disk_id: Option<[u8; 16]>,
pub sector_size: u32,
pub sector_count: u64,
pub physical_sector_size: u32,
pub unmap_behavior: UnmapBehavior,
pub optimal_unmap_sectors: u32,
pub read_only: bool,
pub can_read_cache: bool,
pub is_fua_respected: bool,
}
// DEVNOTE: this is a transient object, used solely in LayeredDisk::new.
struct AttachedDiskLayer {
backing: Box<dyn DynLayerIo>,
meta: DiskLayerMetadata,
}
/// An error returned when creating a [`DiskLayer`].
#[derive(Debug, Error)]
pub enum InvalidLayer {
/// Failed to attach the layer
#[error("failed to attach layer")]
AttachFailed(#[source] anyhow::Error),
/// Read caching was requested but is not supported.
#[error("read caching was requested but is not supported")]
ReadCacheNotSupported,
/// The sector size is invalid.
#[error("sector size {0} is invalid")]
InvalidSectorSize(u32),
/// The sector size of the layers do not match.
#[error("mismatched sector size {found}, expected {expected}")]
MismatchedSectorSize {
/// The expected sector size.
expected: u32,
/// The sector size found in the layer.
found: u32,
},
/// A write-through layer is preceeded by a layer that is not write-through, or
/// the last layer is write-through.
#[error("nothing to write through")]
UselessWriteThrough,
/// Writing to the layered disk would require this layer to be writable.
#[error("read only layer in a writable disk")]
ReadOnly,
}
/// An error returned when creating a [`LayeredDisk`].
#[derive(Debug, Error)]
pub enum InvalidLayeredDisk {
/// No layers were configured.
#[error("no layers were configured")]
NoLayers,
/// An error occurred in a layer.
#[error("invalid layer {0}")]
Layer(usize, #[source] InvalidLayer),
}
/// A configuration for a layer in a [`LayeredDisk`].
pub struct LayerConfiguration<L = DiskLayer> {
/// The backing store for the layer.
pub layer: L,
/// Writes are written both to this layer and the next one.
pub write_through: bool,
/// Reads that miss this layer are written back to this layer.
pub read_cache: bool,
}
impl LayeredDisk {
/// Creates a new layered disk from a list of layers.
///
/// The layers must be ordered from top to bottom, with the top layer being
/// the first in the list.
pub async fn new(
read_only: bool,
layers: Vec<LayerConfiguration>,
) -> Result<Self, InvalidLayeredDisk> {
if layers.is_empty() {
return Err(InvalidLayeredDisk::NoLayers);
}
let mut attached_layers: Vec<LayerConfiguration<AttachedDiskLayer>> = {
let mut attached_layers = Vec::new();
// layers are attached to one another from the bottom-up, hence the need
// to iterate in reverse.
let mut lower_layer_metadata = None;
for (
i,
LayerConfiguration {
layer,
write_through,
read_cache,
},
) in layers.into_iter().enumerate().rev()
{
let layer_error = |e| InvalidLayeredDisk::Layer(i, e);
let layer = layer
.0
.attach(lower_layer_metadata.take())
.await
.map_err(|e| layer_error(InvalidLayer::AttachFailed(e)))?;
let layer_meta = layer.meta.clone();
attached_layers.push(LayerConfiguration {
layer,
write_through,
read_cache,
});
// perform some layer validation prior to attaching subsequent layers
if read_cache && !layer_meta.can_read_cache {
return Err(layer_error(InvalidLayer::ReadCacheNotSupported));
}
if !layer_meta.sector_size.is_power_of_two() {
return Err(layer_error(InvalidLayer::InvalidSectorSize(
layer_meta.sector_size,
)));
}
if layer_meta.sector_size != attached_layers[0].layer.meta.sector_size {
// FUTURE: consider supporting different sector sizes, within reason.
return Err(layer_error(InvalidLayer::MismatchedSectorSize {
expected: attached_layers[0].layer.meta.sector_size,
found: layer_meta.sector_size,
}));
}
lower_layer_metadata = Some(layer_meta);
}
attached_layers.reverse();
attached_layers
};
// perform top-down validation of the layer-stack, collecting various
// common properties of the stack along the way.
let mut last_write_through = true;
let mut is_fua_respected = true;
let mut optimal_unmap_sectors = 1;
let mut unmap_must_zero = false;
let mut disk_id = None;
let mut unmap_behavior = UnmapBehavior::Zeroes;
for (
i,
&LayerConfiguration {
ref layer,
write_through,
read_cache: _,
},
) in attached_layers.iter().enumerate()
{
let layer_error = |e| InvalidLayeredDisk::Layer(i, e);
if last_write_through {
if layer.meta.read_only && !read_only {
return Err(layer_error(InvalidLayer::ReadOnly));
}
is_fua_respected &= layer.meta.is_fua_respected;
// Merge the unmap behavior. If any affected layer ignores
// unmap, then force the whole disk to. If all affected layers
// zero the sectors, then report that the disk zeroes sectors.
//
// If there is at least one write-through layer, then unmap only
// works if the unmap operation will produce the same result in
// all the layers that are being written to. Otherwise, the
// guest could see inconsistent disk contents when the write
// through layer is removed.
unmap_must_zero |= write_through;
unmap_behavior = match (unmap_behavior, layer.meta.unmap_behavior) {
(UnmapBehavior::Zeroes, UnmapBehavior::Zeroes) => UnmapBehavior::Zeroes,
_ if unmap_must_zero => UnmapBehavior::Ignored,
(UnmapBehavior::Ignored, _) => UnmapBehavior::Ignored,
(_, UnmapBehavior::Ignored) => UnmapBehavior::Ignored,
_ => UnmapBehavior::Unspecified,
};
optimal_unmap_sectors = optimal_unmap_sectors.max(layer.meta.optimal_unmap_sectors);
} else if write_through {
// The write-through layers must all come first.
return Err(layer_error(InvalidLayer::UselessWriteThrough));
}
last_write_through = write_through;
if disk_id.is_none() {
disk_id = layer.meta.disk_id;
}
}
if last_write_through {
return Err(InvalidLayeredDisk::Layer(
attached_layers.len() - 1,
InvalidLayer::UselessWriteThrough,
));
}
let sector_size = attached_layers[0].layer.meta.sector_size;
let physical_sector_size = attached_layers[0].layer.meta.physical_sector_size;
let mut last_sector_count = None;
let sector_counts_rev = attached_layers
.iter_mut()
.rev()
.map(|config| *last_sector_count.insert(config.layer.backing.sector_count()))
.collect::<Vec<_>>();
let mut visible_sector_count = !0;
let layers = attached_layers
.into_iter()
.zip(sector_counts_rev.into_iter().rev())
.map(|(config, sector_count)| {
let LayerConfiguration {
layer,
write_through,
read_cache,
} = config;
visible_sector_count = sector_count.min(visible_sector_count);
Layer {
backing: layer.backing,
visible_sector_count,
read_cache,
write_through,
}
})
.collect::<Vec<_>>();
Ok(Self {
is_fua_respected,
read_only,
sector_shift: sector_size.trailing_zeros(),
disk_id,
physical_sector_size,
unmap_behavior,
optimal_unmap_sectors,
layers,
})
}
}
trait DynLayerIo: Send + Sync + Inspect {
fn sector_count(&self) -> u64;
fn read<'a>(
&'a self,
buffers: &'a RequestBuffers<'_>,
sector: u64,
bitmap: SectorMarker<'a>,
) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>>;
fn write<'a>(
&'a self,
buffers: &'a RequestBuffers<'_>,
sector: u64,
fua: bool,
no_overwrite: bool,
) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>>;
fn sync_cache(&self) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>>;
fn unmap(
&self,
sector: u64,
count: u64,
block_level_only: bool,
next_is_zero: bool,
) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>>;
fn wait_resize(&self, sector_count: u64) -> Pin<Box<dyn '_ + Future<Output = u64> + Send>>;
}
impl<T: LayerIo> DynLayerIo for T {
fn sector_count(&self) -> u64 {
self.sector_count()
}
fn read<'a>(
&'a self,
buffers: &'a RequestBuffers<'_>,
sector: u64,
bitmap: SectorMarker<'a>,
) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>> {
Box::pin(async move { self.read(buffers, sector, bitmap).await })
}
fn write<'a>(
&'a self,
buffers: &'a RequestBuffers<'_>,
sector: u64,
fua: bool,
no_overwrite: bool,
) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>> {
Box::pin(async move {
if no_overwrite {
self.write_no_overwrite()
.unwrap()
.write_no_overwrite(buffers, sector)
.await
} else {
self.write(buffers, sector, fua).await
}
})
}
fn sync_cache(&self) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>> {
Box::pin(self.sync_cache())
}
fn unmap(
&self,
sector: u64,
count: u64,
block_level_only: bool,
next_is_zero: bool,
) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>> {
Box::pin(self.unmap(sector, count, block_level_only, next_is_zero))
}
fn wait_resize(&self, sector_count: u64) -> Pin<Box<dyn '_ + Future<Output = u64> + Send>> {
Box::pin(self.wait_resize(sector_count))
}
}
trait DynLayerAttach: Send + Sync {
fn attach(
self: Box<Self>,
lower_layer_metadata: Option<DiskLayerMetadata>,
) -> Pin<Box<dyn Future<Output = anyhow::Result<AttachedDiskLayer>> + Send>>;
}
impl<T: LayerAttach> DynLayerAttach for T {
fn attach(
self: Box<Self>,
lower_layer_metadata: Option<DiskLayerMetadata>,
) -> Pin<Box<dyn Future<Output = anyhow::Result<AttachedDiskLayer>> + Send>> {
Box::pin(async move {
Ok({
let backing = (*self)
.attach(lower_layer_metadata)
.await
.map_err(|e| anyhow::anyhow!(e.into()))?;
let can_read_cache = backing.write_no_overwrite().is_some();
AttachedDiskLayer {
meta: DiskLayerMetadata {
sector_count: LayerIo::sector_count(&backing),
disk_id: backing.disk_id(),
is_fua_respected: backing.is_fua_respected(),
sector_size: backing.sector_size(),
physical_sector_size: backing.physical_sector_size(),
unmap_behavior: backing.unmap_behavior(),
optimal_unmap_sectors: backing.optimal_unmap_sectors(),
read_only: backing.is_logically_read_only(),
can_read_cache,
},
backing: Box::new(backing),
}
})
})
}
}
/// Transition a layer from an unattached type-state, into an attached
/// type-state, capable of performing [`LayerIo`].
///
/// Layers which do not require a type-state transition on-attach (e.g: those
/// which are pre-initialized with a fixed set of metadata) can simply implement
/// `LayerIo` directly, and leverage the blanket-impl of `impl<T: LayerIo>
/// LayerAttach for T` which simply returns `Self` during the state transition.
pub trait LayerAttach: 'static + Send + Sync {
/// Error returned if on attach failure.
type Error: Into<Box<dyn std::error::Error + Send + Sync + 'static>>;
/// Object implementating [`LayerIo`] after being attached.
type Layer: LayerIo;
/// Invoked when the layer is being attached to a layer stack.
///
/// If the layer is being attached on-top of an existing layer,
/// `lower_layer_metadata` can be used to initialize and/or reconfigure the
/// layer using the properties of the layer is is being stacked on-top of.
fn attach(
self,
lower_layer_metadata: Option<DiskLayerMetadata>,
) -> impl Future<Output = Result<Self::Layer, Self::Error>> + Send;
}
impl<T: LayerIo> LayerAttach for T {
type Error = Infallible;
type Layer = Self;
async fn attach(
self,
_lower_layer_metadata: Option<DiskLayerMetadata>,
) -> Result<Self, Infallible> {
Ok(self)
}
}
/// Metadata and IO for disk layers.
pub trait LayerIo: 'static + Send + Sync + Inspect {
/// Returns the layer type name as a string.
///
/// This is used for diagnostic purposes.
fn layer_type(&self) -> &str;
/// Returns the current sector count.
///
/// For some backing stores, this may change at runtime. If it does, then
/// the backing store must also implement [`DiskIo::wait_resize`].
fn sector_count(&self) -> u64;
/// Returns the logical sector size of the backing store.
///
/// This must not change at runtime.
fn sector_size(&self) -> u32;
/// Optionally returns a 16-byte identifier for the disk, if there is a
/// natural one for this backing store.
///
/// This may be exposed to the guest as a unique disk identifier.
/// This must not change at runtime.
fn disk_id(&self) -> Option<[u8; 16]>;
/// Returns the physical sector size of the backing store.
///
/// This must not change at runtime.
fn physical_sector_size(&self) -> u32;
/// Returns true if the `fua` parameter to [`LayerIo::write`] is
/// respected by the backing store by ensuring that the IO is immediately
/// committed to disk.
fn is_fua_respected(&self) -> bool;
/// Returns true if the layer is logically read only.
///
/// If this returns true, the layer might still be writable via
/// `write_no_overwrite`, used to populate the layer as a read cache.
fn is_logically_read_only(&self) -> bool;
/// Issues an asynchronous flush operation to the disk.
fn sync_cache(&self) -> impl Future<Output = Result<(), DiskError>> + Send;
/// Reads sectors from the layer.
///
/// `marker` is used to specify which sectors have been read. Those that are
/// not read will be passed to the next layer, or zeroed if there are no
/// more layers.
fn read(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
marker: SectorMarker<'_>,
) -> impl Future<Output = Result<(), DiskError>> + Send;
/// Writes sectors to the layer.
///
/// # Panics
///
/// The caller must pass a buffer with an integer number of sectors.
fn write(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
fua: bool,
) -> impl Future<Output = Result<(), DiskError>> + Send;
/// Unmap sectors from the layer.
///
/// If `next_is_zero` is true, then the next layer's content's are known to
/// be zero. A layer can use this information to just discard the sectors
/// rather than putting them in the zero state (which make take more space).
fn unmap(
&self,
sector: u64,
count: u64,
block_level_only: bool,
next_is_zero: bool,
) -> impl Future<Output = Result<(), DiskError>> + Send;
/// Returns the behavior of the unmap operation.
fn unmap_behavior(&self) -> UnmapBehavior;
/// Returns the optimal granularity for unmaps, in sectors.
fn optimal_unmap_sectors(&self) -> u32 {
1
}
/// Optionally returns a write-no-overwrite implementation.
fn write_no_overwrite(&self) -> Option<impl WriteNoOverwrite> {
None::<NoIdet>
}
/// Waits for the disk sector size to be different than the specified value.
fn wait_resize(&self, sector_count: u64) -> impl Future<Output = u64> + Send {
let _ = sector_count;
std::future::pending()
}
}
enum NoIdet {}
/// Writes to the layer without overwriting existing data.
pub trait WriteNoOverwrite: Send + Sync {
/// Write to the layer without overwriting existing data. Existing sectors
/// must be preserved.
///
/// This is used to support read caching, where the data being written may
/// be stale by the time it is written back to the layer.
fn write_no_overwrite(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
) -> impl Future<Output = Result<(), DiskError>> + Send;
}
impl<T: WriteNoOverwrite> WriteNoOverwrite for &T {
fn write_no_overwrite(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
) -> impl Future<Output = Result<(), DiskError>> + Send {
(*self).write_no_overwrite(buffers, sector)
}
}
impl WriteNoOverwrite for NoIdet {
async fn write_no_overwrite(
&self,
_buffers: &RequestBuffers<'_>,
_sector: u64,
) -> Result<(), DiskError> {
unreachable!()
}
}
impl DiskIo for LayeredDisk {
fn disk_type(&self) -> &str {
"layered"
}
fn sector_count(&self) -> u64 {
self.layers[0].backing.sector_count()
}
fn sector_size(&self) -> u32 {
1 << self.sector_shift
}
fn disk_id(&self) -> Option<[u8; 16]> {
self.disk_id
}
fn physical_sector_size(&self) -> u32 {
self.physical_sector_size
}
fn is_fua_respected(&self) -> bool {
self.is_fua_respected
}
fn is_read_only(&self) -> bool {
self.read_only
}
async fn read_vectored(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
) -> Result<(), DiskError> {
let mut bounce_buffers = None::<(OwnedRequestBuffers, GuestMemory)>;
let sector_count = buffers.len() >> self.sector_shift;
let mut bitmap = Bitmap::new(sector, sector_count);
let mut bits_set = 0;
let mut populate_cache = Vec::new();
// FUTURE: queue the reads to the layers in parallel.
'done: for (i, layer) in self.layers.iter().enumerate() {
if bits_set == sector_count {
break;
}
for mut range in bitmap.unset_iter() {
let end = if i == 0 {
// The visible sector count of the first layer is unknown,
// since it could change at any time.
range.end_sector()
} else {
// Restrict the range to the visible sector count of the
// layer; sectors beyond this are logically zero.
let end = range.end_sector().min(layer.visible_sector_count);
if range.start_sector() == end {
break 'done;
}
end
};
let sectors = end - range.start_sector();
let this_buffers = if let Some((bounce_buffers, mem)) = &bounce_buffers {
&bounce_buffers.buffer(mem)
} else {
buffers
};
let this_buffers = this_buffers.subrange(
range.start_sector_within_bitmap() << self.sector_shift,
(sectors as usize) << self.sector_shift,
);
layer
.backing
.read(&this_buffers, range.start_sector(), range.view(sectors))
.await?;
bits_set += range.set_count();
if range.set_count() as u64 != range.len() && layer.read_cache {
// Allocate bounce buffers to read into to ensure that we get a stable
// copy of the data to populate the cache.
bounce_buffers.get_or_insert_with(|| {
let mem = GuestMemory::allocate(buffers.len());
let owned_buf = OwnedRequestBuffers::linear(0, buffers.len(), true);
(owned_buf, mem)
});
populate_cache.extend(range.unset_iter().map(|range| (layer, range)));
}
}
}
if bits_set != sector_count {
for range in bitmap.unset_iter() {
let len = (range.len() as usize) << self.sector_shift;
buffers
.subrange(range.start_sector_within_bitmap() << self.sector_shift, len)
.writer()
.zero(len)?;
}
}
if !populate_cache.is_empty() {
let (bounce_buffers, mem) = bounce_buffers.unwrap();
let bounce_buffers = bounce_buffers.buffer(&mem);
for &(layer, ref range) in &populate_cache {
assert!(layer.read_cache);
let offset = ((range.start - sector) as usize) << self.sector_shift;
let len = ((range.end - range.start) as usize) << self.sector_shift;
if let Err(err) = layer
.backing
.write(
&bounce_buffers.subrange(offset, len),
range.start,
false,
true,
)
.await
{
tracelimit::warn_ratelimited!(
error = &err as &dyn std::error::Error,
sector = range.start,
count = range.end - range.start,
"failed to populate read cache",
);
}
}
let mut mem = mem.into_inner_buf().ok().unwrap();
for (_, range) in populate_cache {
// Write this bounced range back to the original buffer. This
// might be redundant in the presence of multiple cache layers,
// but this is the simplest implementation.
let offset = ((range.start - sector) as usize) << self.sector_shift;
let len = ((range.end - range.start) as usize) << self.sector_shift;
buffers
.subrange(offset, len)
.writer()
.write(&mem.as_bytes()[offset..][..len])?;
}
}
Ok(())
}
async fn write_vectored(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
fua: bool,
) -> Result<(), DiskError> {
for layer in &self.layers {
layer.backing.write(buffers, sector, fua, false).await?;
if !layer.write_through {
break;
}
}
Ok(())
}
async fn sync_cache(&self) -> Result<(), DiskError> {
for layer in &self.layers {
layer.backing.sync_cache().await?;
if !layer.write_through {
break;
}
}
Ok(())
}
fn wait_resize(&self, sector_count: u64) -> impl Future<Output = u64> + Send {
self.layers[0].backing.wait_resize(sector_count)
}
async fn unmap(
&self,
sector_offset: u64,
sector_count: u64,
block_level_only: bool,
) -> Result<(), DiskError> {
if self.unmap_behavior == UnmapBehavior::Ignored {
return Ok(());
}
for (layer, next_layer) in self
.layers
.iter()
.zip(self.layers.iter().map(Some).skip(1).chain([None]))
{
let next_is_zero = if let Some(next_layer) = next_layer {
// Sectors beyond the layer's visible sector count are logically
// zero.
//
// FUTURE: consider splitting the unmap operation into multiple
// operations across this boundary.
sector_offset >= next_layer.visible_sector_count
} else {
true
};
layer
.backing
.unmap(sector_offset, sector_count, block_level_only, next_is_zero)
.await?;
if !layer.write_through {
break;
}
}
Ok(())
}
fn unmap_behavior(&self) -> UnmapBehavior {
self.unmap_behavior
}
fn optimal_unmap_sectors(&self) -> u32 {
self.optimal_unmap_sectors
}
}
/// A disk layer wrapping a full disk.
#[derive(Inspect)]
#[inspect(transparent)]
struct DiskAsLayer(Disk);
impl LayerIo for DiskAsLayer {
fn layer_type(&self) -> &str {
"disk"
}
fn sector_count(&self) -> u64 {
self.0.sector_count()
}
fn sector_size(&self) -> u32 {
self.0.sector_size()
}
fn disk_id(&self) -> Option<[u8; 16]> {
self.0.disk_id()
}
fn physical_sector_size(&self) -> u32 {
self.0.physical_sector_size()
}
fn is_fua_respected(&self) -> bool {
self.0.is_fua_respected()
}
fn is_logically_read_only(&self) -> bool {
self.0.is_read_only()
}
fn sync_cache(&self) -> impl Future<Output = Result<(), DiskError>> + Send {
self.0.sync_cache()
}
async fn read(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
mut bitmap: SectorMarker<'_>,
) -> Result<(), DiskError> {
// The disk is fully populated.
bitmap.set_all();
self.0.read_vectored(buffers, sector).await
}
async fn write(
&self,
buffers: &RequestBuffers<'_>,
sector: u64,
fua: bool,
) -> Result<(), DiskError> {
self.0.write_vectored(buffers, sector, fua).await
}
fn unmap(
&self,
sector: u64,
count: u64,
block_level_only: bool,
_lower_is_zero: bool,
) -> impl Future<Output = Result<(), DiskError>> + Send {
self.0.unmap(sector, count, block_level_only)
}
fn unmap_behavior(&self) -> UnmapBehavior {
self.0.unmap_behavior()
}
}
#[cfg(test)]
mod tests {
use crate::DiskLayer;
use crate::LayerConfiguration;
use crate::LayerIo;
use crate::LayeredDisk;
use crate::SectorMarker;
use crate::WriteNoOverwrite;
use disk_backend::DiskIo;
use disk_backend::UnmapBehavior;
use guestmem::GuestMemory;
use guestmem::MemoryRead as _;
use guestmem::MemoryWrite;
use inspect::Inspect;
use pal_async::async_test;
use parking_lot::Mutex;
use scsi_buffers::OwnedRequestBuffers;
use std::collections::BTreeMap;
use std::collections::btree_map::Entry;
use std::sync::Arc;
#[derive(Inspect)]
#[inspect(skip)]
struct TestLayer {
sectors: Mutex<BTreeMap<u64, Data>>,
sector_count: u64,
}
impl TestLayer {
fn new(sector_count: u64) -> Self {
Self {
sectors: Mutex::new(BTreeMap::new()),
sector_count,
}
}
}
struct Data(Box<[u8]>);
impl LayerIo for Arc<TestLayer> {
fn layer_type(&self) -> &str {
"test"
}
fn sector_count(&self) -> u64 {
self.sector_count
}
fn sector_size(&self) -> u32 {
512
}
fn disk_id(&self) -> Option<[u8; 16]> {
None
}
fn physical_sector_size(&self) -> u32 {
512
}
fn is_fua_respected(&self) -> bool {
false
}
fn is_logically_read_only(&self) -> bool {
false
}
async fn sync_cache(&self) -> Result<(), disk_backend::DiskError> {
Ok(())
}
async fn read(
&self,
buffers: &scsi_buffers::RequestBuffers<'_>,
sector: u64,
mut marker: SectorMarker<'_>,
) -> Result<(), disk_backend::DiskError> {
let sector_count = buffers.len() / self.sector_size() as usize;
let sectors = self.sectors.lock();
for i in sector..sector + sector_count as u64 {
let Some(data) = sectors.get(&i) else {
continue;
};
let offset = ((i - sector) * self.sector_size() as u64) as usize;
buffers
.subrange(offset, self.sector_size() as usize)
.writer()
.write(&data.0)?;
marker.set(i);
}
Ok(())
}
async fn write(
&self,
buffers: &scsi_buffers::RequestBuffers<'_>,
sector: u64,
_fua: bool,
) -> Result<(), disk_backend::DiskError> {
let sector_count = buffers.len() / self.sector_size() as usize;
let mut sectors = self.sectors.lock();
for i in sector..sector + sector_count as u64 {
let offset = ((i - sector) * self.sector_size() as u64) as usize;
let mut data = Data(vec![0; self.sector_size() as usize].into());
buffers
.subrange(offset, self.sector_size() as usize)
.reader()
.read(&mut data.0)?;
sectors.insert(i, data);
}
Ok(())
}
async fn unmap(
&self,
sector: u64,
count: u64,
_block_level_only: bool,
next_is_zero: bool,
) -> Result<(), disk_backend::DiskError> {
if !next_is_zero {
return Ok(());
}
let mut sectors = self.sectors.lock();
let mut next_sector = sector;
let end = sector + count;
while next_sector < end {
let Some((§or, _)) = sectors.range_mut(next_sector..).next() else {
break;
};
if sector >= end {
break;
}
sectors.remove(§or);
next_sector = sector + 1;
}
Ok(())
}
fn unmap_behavior(&self) -> UnmapBehavior {
UnmapBehavior::Unspecified
}
fn write_no_overwrite(&self) -> Option<impl WriteNoOverwrite> {
Some(self)
}
}
impl WriteNoOverwrite for Arc<TestLayer> {
async fn write_no_overwrite(
&self,
buffers: &scsi_buffers::RequestBuffers<'_>,
sector: u64,
) -> Result<(), disk_backend::DiskError> {
let sector_count = buffers.len() / self.sector_size() as usize;
let mut sectors = self.sectors.lock();
for i in sector..sector + sector_count as u64 {
let Entry::Vacant(entry) = sectors.entry(i) else {
continue;
};
let offset = ((i - sector) * self.sector_size() as u64) as usize;
let mut data = Data(vec![0; self.sector_size() as usize].into());
buffers
.subrange(offset, self.sector_size() as usize)
.reader()
.read(&mut data.0)?;
entry.insert(data);
}
Ok(())
}
}
#[async_test]
async fn test_read_cache() {
const SIZE: u64 = 2048;
let bottom = Arc::new(TestLayer::new(SIZE));
let pattern = |i: u64| {
let mut acc = (i + 1) * 3;
Data(
(0..512)
.map(|_| {
acc = acc.wrapping_mul(7);
acc as u8
})
.collect::<Vec<_>>()
.into(),
)
};
bottom
.sectors
.lock()
.extend((0..SIZE).map(|i| (i, pattern(i))));
let cache = Arc::new(TestLayer::new(SIZE));
let cache_cfg = LayerConfiguration {
layer: DiskLayer::new(cache.clone()),
read_cache: true,
write_through: false,
};
let bottom_cfg = LayerConfiguration {
layer: DiskLayer::new(bottom),
read_cache: false,
write_through: false,
};
let disk = LayeredDisk::new(false, vec![cache_cfg, bottom_cfg])
.await
.unwrap();
let mut mem = GuestMemory::allocate(0x10000);
let buffers = OwnedRequestBuffers::linear(0, 0x10000, true);
for i in [0, 2, 4, 6, 8, 0, 2, 4, 6, 8] {
disk.read_vectored(&buffers.buffer(&mem).subrange(0, 512), i)
.await
.unwrap();
assert_eq!(mem.inner_buf_mut().unwrap()[..512], pattern(i).0[..]);
}
assert_eq!(cache.sectors.lock().len(), 5);
mem.inner_buf_mut().unwrap().fill(0);
disk.read_vectored(&buffers.buffer(&mem).subrange(0, 15 * 512), 1)
.await
.unwrap();
assert_eq!(cache.sectors.lock().len(), 16);
for i in 0..15 {
assert_eq!(
mem.inner_buf_mut().unwrap()[i as usize * 512..][..512],
pattern(i + 1).0[..],
"{i}"
);
}
}
}