disk_layered/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! A layered disk implementation, [`LayeredDisk`].
//!
//! A layered disk is a disk composed of multiple layers. Each layer is a block
//! device made up of sectors, but with the added per-sector state of whether
//! the sector is present or not. When reading a sector, the layered disk will
//! read from the topmost layer that has the sector present. When writing, the
//! disk will write to the topmost layer.
//!
//! A layer can also have caching behavior. If a layer is configured to cache
//! reads, then sectors that are read from lower layers are written back to the
//! layer. If a layer is configured to write through, then writes are written to
//! the layer and the next layer. These can be useful to implement simple
//! persistent and non-persistent caches, primarily designed for lazily
//! populating local backing stores from remote sources.
//!
//! Missing from this implementation is write-back caching and cache eviction,
//! which would be needed for caches that are smaller than the disk. These
//! require potentially complicated cache management policies and are probably
//! best implemented in a separate disk implementation.

#![forbid(unsafe_code)]

mod bitmap;
pub mod resolve;
pub mod resolver;

pub use bitmap::SectorMarker;

use bitmap::Bitmap;
use disk_backend::Disk;
use disk_backend::DiskError;
use disk_backend::DiskIo;
use disk_backend::UnmapBehavior;
use guestmem::GuestMemory;
use guestmem::MemoryWrite;
use inspect::Inspect;
use scsi_buffers::OwnedRequestBuffers;
use scsi_buffers::RequestBuffers;
use std::convert::Infallible;
use std::future::Future;
use std::pin::Pin;
use thiserror::Error;

/// A disk composed of multiple layers.
#[derive(Inspect)]
pub struct LayeredDisk {
    #[inspect(iter_by_index)]
    layers: Vec<Layer>,
    read_only: bool,
    is_fua_respected: bool,
    sector_shift: u32,
    disk_id: Option<[u8; 16]>,
    physical_sector_size: u32,
    unmap_behavior: UnmapBehavior,
    optimal_unmap_sectors: u32,
}

#[derive(Inspect)]
struct Layer {
    backing: Box<dyn DynLayerIo>,
    visible_sector_count: u64,
    read_cache: bool,
    write_through: bool,
}

/// A single layer which can be attached to a [`LayeredDisk`].
pub struct DiskLayer(Box<dyn DynLayerAttach>);

impl DiskLayer {
    /// Creates a new layer from a backing store.
    pub fn new<T: LayerAttach>(backing: T) -> Self {
        Self(Box::new(backing))
    }

    /// Creates a layer from a disk. The resulting layer is always fully
    /// present.
    pub fn from_disk(disk: Disk) -> Self {
        Self::new(DiskAsLayer(disk))
    }
}

/// Metadata of a particular layer, collected from various [`LayerIo`] APIs.
#[derive(Clone)]
#[expect(missing_docs)] // self-explanatory names
pub struct DiskLayerMetadata {
    pub disk_id: Option<[u8; 16]>,
    pub sector_size: u32,
    pub sector_count: u64,
    pub physical_sector_size: u32,
    pub unmap_behavior: UnmapBehavior,
    pub optimal_unmap_sectors: u32,
    pub read_only: bool,
    pub can_read_cache: bool,
    pub is_fua_respected: bool,
}

// DEVNOTE: this is a transient object, used solely in LayeredDisk::new.
struct AttachedDiskLayer {
    backing: Box<dyn DynLayerIo>,
    meta: DiskLayerMetadata,
}

/// An error returned when creating a [`DiskLayer`].
#[derive(Debug, Error)]
pub enum InvalidLayer {
    /// Failed to attach the layer
    #[error("failed to attach layer")]
    AttachFailed(#[source] anyhow::Error),
    /// Read caching was requested but is not supported.
    #[error("read caching was requested but is not supported")]
    ReadCacheNotSupported,
    /// The sector size is invalid.
    #[error("sector size {0} is invalid")]
    InvalidSectorSize(u32),
    /// The sector size of the layers do not match.
    #[error("mismatched sector size {found}, expected {expected}")]
    MismatchedSectorSize {
        /// The expected sector size.
        expected: u32,
        /// The sector size found in the layer.
        found: u32,
    },
    /// A write-through layer is preceeded by a layer that is not write-through, or
    /// the last layer is write-through.
    #[error("nothing to write through")]
    UselessWriteThrough,
    /// Writing to the layered disk would require this layer to be writable.
    #[error("read only layer in a writable disk")]
    ReadOnly,
}

/// An error returned when creating a [`LayeredDisk`].
#[derive(Debug, Error)]
pub enum InvalidLayeredDisk {
    /// No layers were configured.
    #[error("no layers were configured")]
    NoLayers,
    /// An error occurred in a layer.
    #[error("invalid layer {0}")]
    Layer(usize, #[source] InvalidLayer),
}

/// A configuration for a layer in a [`LayeredDisk`].
pub struct LayerConfiguration<L = DiskLayer> {
    /// The backing store for the layer.
    pub layer: L,
    /// Writes are written both to this layer and the next one.
    pub write_through: bool,
    /// Reads that miss this layer are written back to this layer.
    pub read_cache: bool,
}

impl LayeredDisk {
    /// Creates a new layered disk from a list of layers.
    ///
    /// The layers must be ordered from top to bottom, with the top layer being
    /// the first in the list.
    pub async fn new(
        read_only: bool,
        layers: Vec<LayerConfiguration>,
    ) -> Result<Self, InvalidLayeredDisk> {
        if layers.is_empty() {
            return Err(InvalidLayeredDisk::NoLayers);
        }

        let mut attached_layers: Vec<LayerConfiguration<AttachedDiskLayer>> = {
            let mut attached_layers = Vec::new();

            // layers are attached to one another from the bottom-up, hence the need
            // to iterate in reverse.
            let mut lower_layer_metadata = None;
            for (
                i,
                LayerConfiguration {
                    layer,
                    write_through,
                    read_cache,
                },
            ) in layers.into_iter().enumerate().rev()
            {
                let layer_error = |e| InvalidLayeredDisk::Layer(i, e);

                let layer = layer
                    .0
                    .attach(lower_layer_metadata.take())
                    .await
                    .map_err(|e| layer_error(InvalidLayer::AttachFailed(e)))?;

                let layer_meta = layer.meta.clone();

                attached_layers.push(LayerConfiguration {
                    layer,
                    write_through,
                    read_cache,
                });

                // perform some layer validation prior to attaching subsequent layers
                if read_cache && !layer_meta.can_read_cache {
                    return Err(layer_error(InvalidLayer::ReadCacheNotSupported));
                }
                if !layer_meta.sector_size.is_power_of_two() {
                    return Err(layer_error(InvalidLayer::InvalidSectorSize(
                        layer_meta.sector_size,
                    )));
                }
                if layer_meta.sector_size != attached_layers[0].layer.meta.sector_size {
                    // FUTURE: consider supporting different sector sizes, within reason.
                    return Err(layer_error(InvalidLayer::MismatchedSectorSize {
                        expected: attached_layers[0].layer.meta.sector_size,
                        found: layer_meta.sector_size,
                    }));
                }

                lower_layer_metadata = Some(layer_meta);
            }

            attached_layers.reverse();
            attached_layers
        };

        // perform top-down validation of the layer-stack, collecting various
        // common properties of the stack along the way.
        let mut last_write_through = true;
        let mut is_fua_respected = true;
        let mut optimal_unmap_sectors = 1;
        let mut unmap_must_zero = false;
        let mut disk_id = None;
        let mut unmap_behavior = UnmapBehavior::Zeroes;
        for (
            i,
            &LayerConfiguration {
                ref layer,
                write_through,
                read_cache: _,
            },
        ) in attached_layers.iter().enumerate()
        {
            let layer_error = |e| InvalidLayeredDisk::Layer(i, e);

            if last_write_through {
                if layer.meta.read_only && !read_only {
                    return Err(layer_error(InvalidLayer::ReadOnly));
                }
                is_fua_respected &= layer.meta.is_fua_respected;
                // Merge the unmap behavior. If any affected layer ignores
                // unmap, then force the whole disk to. If all affected layers
                // zero the sectors, then report that the disk zeroes sectors.
                //
                // If there is at least one write-through layer, then unmap only
                // works if the unmap operation will produce the same result in
                // all the layers that are being written to. Otherwise, the
                // guest could see inconsistent disk contents when the write
                // through layer is removed.
                unmap_must_zero |= write_through;
                unmap_behavior = match (unmap_behavior, layer.meta.unmap_behavior) {
                    (UnmapBehavior::Zeroes, UnmapBehavior::Zeroes) => UnmapBehavior::Zeroes,
                    _ if unmap_must_zero => UnmapBehavior::Ignored,
                    (UnmapBehavior::Ignored, _) => UnmapBehavior::Ignored,
                    (_, UnmapBehavior::Ignored) => UnmapBehavior::Ignored,
                    _ => UnmapBehavior::Unspecified,
                };
                optimal_unmap_sectors = optimal_unmap_sectors.max(layer.meta.optimal_unmap_sectors);
            } else if write_through {
                // The write-through layers must all come first.
                return Err(layer_error(InvalidLayer::UselessWriteThrough));
            }
            last_write_through = write_through;
            if disk_id.is_none() {
                disk_id = layer.meta.disk_id;
            }
        }

        if last_write_through {
            return Err(InvalidLayeredDisk::Layer(
                attached_layers.len() - 1,
                InvalidLayer::UselessWriteThrough,
            ));
        }

        let sector_size = attached_layers[0].layer.meta.sector_size;
        let physical_sector_size = attached_layers[0].layer.meta.physical_sector_size;

        let mut last_sector_count = None;
        let sector_counts_rev = attached_layers
            .iter_mut()
            .rev()
            .map(|config| *last_sector_count.insert(config.layer.backing.sector_count()))
            .collect::<Vec<_>>();

        let mut visible_sector_count = !0;
        let layers = attached_layers
            .into_iter()
            .zip(sector_counts_rev.into_iter().rev())
            .map(|(config, sector_count)| {
                let LayerConfiguration {
                    layer,
                    write_through,
                    read_cache,
                } = config;
                visible_sector_count = sector_count.min(visible_sector_count);
                Layer {
                    backing: layer.backing,
                    visible_sector_count,
                    read_cache,
                    write_through,
                }
            })
            .collect::<Vec<_>>();

        Ok(Self {
            is_fua_respected,
            read_only,
            sector_shift: sector_size.trailing_zeros(),
            disk_id,
            physical_sector_size,
            unmap_behavior,
            optimal_unmap_sectors,
            layers,
        })
    }
}

trait DynLayerIo: Send + Sync + Inspect {
    fn sector_count(&self) -> u64;

    fn read<'a>(
        &'a self,
        buffers: &'a RequestBuffers<'_>,
        sector: u64,
        bitmap: SectorMarker<'a>,
    ) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>>;

    fn write<'a>(
        &'a self,
        buffers: &'a RequestBuffers<'_>,
        sector: u64,
        fua: bool,
        no_overwrite: bool,
    ) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>>;

    fn sync_cache(&self) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>>;

    fn unmap(
        &self,
        sector: u64,
        count: u64,
        block_level_only: bool,
        next_is_zero: bool,
    ) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>>;

    fn wait_resize(&self, sector_count: u64) -> Pin<Box<dyn '_ + Future<Output = u64> + Send>>;
}

impl<T: LayerIo> DynLayerIo for T {
    fn sector_count(&self) -> u64 {
        self.sector_count()
    }

    fn read<'a>(
        &'a self,
        buffers: &'a RequestBuffers<'_>,
        sector: u64,
        bitmap: SectorMarker<'a>,
    ) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>> {
        Box::pin(async move { self.read(buffers, sector, bitmap).await })
    }

    fn write<'a>(
        &'a self,
        buffers: &'a RequestBuffers<'_>,
        sector: u64,
        fua: bool,
        no_overwrite: bool,
    ) -> Pin<Box<dyn 'a + Future<Output = Result<(), DiskError>> + Send>> {
        Box::pin(async move {
            if no_overwrite {
                self.write_no_overwrite()
                    .unwrap()
                    .write_no_overwrite(buffers, sector)
                    .await
            } else {
                self.write(buffers, sector, fua).await
            }
        })
    }

    fn sync_cache(&self) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>> {
        Box::pin(self.sync_cache())
    }

    fn unmap(
        &self,
        sector: u64,
        count: u64,
        block_level_only: bool,
        next_is_zero: bool,
    ) -> Pin<Box<dyn '_ + Future<Output = Result<(), DiskError>> + Send>> {
        Box::pin(self.unmap(sector, count, block_level_only, next_is_zero))
    }

    fn wait_resize(&self, sector_count: u64) -> Pin<Box<dyn '_ + Future<Output = u64> + Send>> {
        Box::pin(self.wait_resize(sector_count))
    }
}

trait DynLayerAttach: Send + Sync {
    fn attach(
        self: Box<Self>,
        lower_layer_metadata: Option<DiskLayerMetadata>,
    ) -> Pin<Box<dyn Future<Output = anyhow::Result<AttachedDiskLayer>> + Send>>;
}

impl<T: LayerAttach> DynLayerAttach for T {
    fn attach(
        self: Box<Self>,
        lower_layer_metadata: Option<DiskLayerMetadata>,
    ) -> Pin<Box<dyn Future<Output = anyhow::Result<AttachedDiskLayer>> + Send>> {
        Box::pin(async move {
            Ok({
                let backing = (*self)
                    .attach(lower_layer_metadata)
                    .await
                    .map_err(|e| anyhow::anyhow!(e.into()))?;
                let can_read_cache = backing.write_no_overwrite().is_some();
                AttachedDiskLayer {
                    meta: DiskLayerMetadata {
                        sector_count: LayerIo::sector_count(&backing),
                        disk_id: backing.disk_id(),
                        is_fua_respected: backing.is_fua_respected(),
                        sector_size: backing.sector_size(),
                        physical_sector_size: backing.physical_sector_size(),
                        unmap_behavior: backing.unmap_behavior(),
                        optimal_unmap_sectors: backing.optimal_unmap_sectors(),
                        read_only: backing.is_logically_read_only(),
                        can_read_cache,
                    },
                    backing: Box::new(backing),
                }
            })
        })
    }
}

/// Transition a layer from an unattached type-state, into an attached
/// type-state, capable of performing [`LayerIo`].
///
/// Layers which do not require a type-state transition on-attach (e.g: those
/// which are pre-initialized with a fixed set of metadata) can simply implement
/// `LayerIo` directly, and leverage the blanket-impl of `impl<T: LayerIo>
/// LayerAttach for T` which simply returns `Self` during the state transition.
pub trait LayerAttach: 'static + Send + Sync {
    /// Error returned if on attach failure.
    type Error: Into<Box<dyn std::error::Error + Send + Sync + 'static>>;
    /// Object implementating [`LayerIo`] after being attached.
    type Layer: LayerIo;

    /// Invoked when the layer is being attached to a layer stack.
    ///
    /// If the layer is being attached on-top of an existing layer,
    /// `lower_layer_metadata` can be used to initialize and/or reconfigure the
    /// layer using the properties of the layer is is being stacked on-top of.
    fn attach(
        self,
        lower_layer_metadata: Option<DiskLayerMetadata>,
    ) -> impl Future<Output = Result<Self::Layer, Self::Error>> + Send;
}

impl<T: LayerIo> LayerAttach for T {
    type Error = Infallible;
    type Layer = Self;
    async fn attach(
        self,
        _lower_layer_metadata: Option<DiskLayerMetadata>,
    ) -> Result<Self, Infallible> {
        Ok(self)
    }
}

/// Metadata and IO for disk layers.
pub trait LayerIo: 'static + Send + Sync + Inspect {
    /// Returns the layer type name as a string.
    ///
    /// This is used for diagnostic purposes.
    fn layer_type(&self) -> &str;

    /// Returns the current sector count.
    ///
    /// For some backing stores, this may change at runtime. If it does, then
    /// the backing store must also implement [`DiskIo::wait_resize`].
    fn sector_count(&self) -> u64;

    /// Returns the logical sector size of the backing store.
    ///
    /// This must not change at runtime.
    fn sector_size(&self) -> u32;

    /// Optionally returns a 16-byte identifier for the disk, if there is a
    /// natural one for this backing store.
    ///
    /// This may be exposed to the guest as a unique disk identifier.
    /// This must not change at runtime.
    fn disk_id(&self) -> Option<[u8; 16]>;

    /// Returns the physical sector size of the backing store.
    ///
    /// This must not change at runtime.
    fn physical_sector_size(&self) -> u32;

    /// Returns true if the `fua` parameter to [`LayerIo::write`] is
    /// respected by the backing store by ensuring that the IO is immediately
    /// committed to disk.
    fn is_fua_respected(&self) -> bool;

    /// Returns true if the layer is logically read only.
    ///
    /// If this returns true, the layer might still be writable via
    /// `write_no_overwrite`, used to populate the layer as a read cache.
    fn is_logically_read_only(&self) -> bool;

    /// Issues an asynchronous flush operation to the disk.
    fn sync_cache(&self) -> impl Future<Output = Result<(), DiskError>> + Send;

    /// Reads sectors from the layer.
    ///
    /// `marker` is used to specify which sectors have been read. Those that are
    /// not read will be passed to the next layer, or zeroed if there are no
    /// more layers.
    fn read(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
        marker: SectorMarker<'_>,
    ) -> impl Future<Output = Result<(), DiskError>> + Send;

    /// Writes sectors to the layer.
    ///
    /// # Panics
    ///
    /// The caller must pass a buffer with an integer number of sectors.
    fn write(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
        fua: bool,
    ) -> impl Future<Output = Result<(), DiskError>> + Send;

    /// Unmap sectors from the layer.
    ///
    /// If `next_is_zero` is true, then the next layer's content's are known to
    /// be zero. A layer can use this information to just discard the sectors
    /// rather than putting them in the zero state (which make take more space).
    fn unmap(
        &self,
        sector: u64,
        count: u64,
        block_level_only: bool,
        next_is_zero: bool,
    ) -> impl Future<Output = Result<(), DiskError>> + Send;

    /// Returns the behavior of the unmap operation.
    fn unmap_behavior(&self) -> UnmapBehavior;

    /// Returns the optimal granularity for unmaps, in sectors.
    fn optimal_unmap_sectors(&self) -> u32 {
        1
    }

    /// Optionally returns a write-no-overwrite implementation.
    fn write_no_overwrite(&self) -> Option<impl WriteNoOverwrite> {
        None::<NoIdet>
    }

    /// Waits for the disk sector size to be different than the specified value.
    fn wait_resize(&self, sector_count: u64) -> impl Future<Output = u64> + Send {
        let _ = sector_count;
        std::future::pending()
    }
}

enum NoIdet {}

/// Writes to the layer without overwriting existing data.
pub trait WriteNoOverwrite: Send + Sync {
    /// Write to the layer without overwriting existing data. Existing sectors
    /// must be preserved.
    ///
    /// This is used to support read caching, where the data being written may
    /// be stale by the time it is written back to the layer.
    fn write_no_overwrite(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
    ) -> impl Future<Output = Result<(), DiskError>> + Send;
}

impl<T: WriteNoOverwrite> WriteNoOverwrite for &T {
    fn write_no_overwrite(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
    ) -> impl Future<Output = Result<(), DiskError>> + Send {
        (*self).write_no_overwrite(buffers, sector)
    }
}

impl WriteNoOverwrite for NoIdet {
    async fn write_no_overwrite(
        &self,
        _buffers: &RequestBuffers<'_>,
        _sector: u64,
    ) -> Result<(), DiskError> {
        unreachable!()
    }
}

impl DiskIo for LayeredDisk {
    fn disk_type(&self) -> &str {
        "layered"
    }

    fn sector_count(&self) -> u64 {
        self.layers[0].backing.sector_count()
    }

    fn sector_size(&self) -> u32 {
        1 << self.sector_shift
    }

    fn disk_id(&self) -> Option<[u8; 16]> {
        self.disk_id
    }

    fn physical_sector_size(&self) -> u32 {
        self.physical_sector_size
    }

    fn is_fua_respected(&self) -> bool {
        self.is_fua_respected
    }

    fn is_read_only(&self) -> bool {
        self.read_only
    }

    async fn read_vectored(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
    ) -> Result<(), DiskError> {
        let mut bounce_buffers = None::<(OwnedRequestBuffers, GuestMemory)>;
        let sector_count = buffers.len() >> self.sector_shift;
        let mut bitmap = Bitmap::new(sector, sector_count);
        let mut bits_set = 0;
        let mut populate_cache = Vec::new();
        // FUTURE: queue the reads to the layers in parallel.
        'done: for (i, layer) in self.layers.iter().enumerate() {
            if bits_set == sector_count {
                break;
            }
            for mut range in bitmap.unset_iter() {
                let end = if i == 0 {
                    // The visible sector count of the first layer is unknown,
                    // since it could change at any time.
                    range.end_sector()
                } else {
                    // Restrict the range to the visible sector count of the
                    // layer; sectors beyond this are logically zero.
                    let end = range.end_sector().min(layer.visible_sector_count);
                    if range.start_sector() == end {
                        break 'done;
                    }
                    end
                };

                let sectors = end - range.start_sector();

                let this_buffers = if let Some((bounce_buffers, mem)) = &bounce_buffers {
                    &bounce_buffers.buffer(mem)
                } else {
                    buffers
                };
                let this_buffers = this_buffers.subrange(
                    range.start_sector_within_bitmap() << self.sector_shift,
                    (sectors as usize) << self.sector_shift,
                );

                layer
                    .backing
                    .read(&this_buffers, range.start_sector(), range.view(sectors))
                    .await?;

                bits_set += range.set_count();

                if range.set_count() as u64 != range.len() && layer.read_cache {
                    // Allocate bounce buffers to read into to ensure that we get a stable
                    // copy of the data to populate the cache.
                    bounce_buffers.get_or_insert_with(|| {
                        let mem = GuestMemory::allocate(buffers.len());
                        let owned_buf = OwnedRequestBuffers::linear(0, buffers.len(), true);
                        (owned_buf, mem)
                    });

                    populate_cache.extend(range.unset_iter().map(|range| (layer, range)));
                }
            }
        }
        if bits_set != sector_count {
            for range in bitmap.unset_iter() {
                let len = (range.len() as usize) << self.sector_shift;
                buffers
                    .subrange(range.start_sector_within_bitmap() << self.sector_shift, len)
                    .writer()
                    .zero(len)?;
            }
        }
        if !populate_cache.is_empty() {
            let (bounce_buffers, mem) = bounce_buffers.unwrap();
            let bounce_buffers = bounce_buffers.buffer(&mem);
            for &(layer, ref range) in &populate_cache {
                assert!(layer.read_cache);
                let offset = ((range.start - sector) as usize) << self.sector_shift;
                let len = ((range.end - range.start) as usize) << self.sector_shift;
                if let Err(err) = layer
                    .backing
                    .write(
                        &bounce_buffers.subrange(offset, len),
                        range.start,
                        false,
                        true,
                    )
                    .await
                {
                    tracelimit::warn_ratelimited!(
                        error = &err as &dyn std::error::Error,
                        sector = range.start,
                        count = range.end - range.start,
                        "failed to populate read cache",
                    );
                }
            }
            let mut mem = mem.into_inner_buf().ok().unwrap();
            for (_, range) in populate_cache {
                // Write this bounced range back to the original buffer. This
                // might be redundant in the presence of multiple cache layers,
                // but this is the simplest implementation.
                let offset = ((range.start - sector) as usize) << self.sector_shift;
                let len = ((range.end - range.start) as usize) << self.sector_shift;
                buffers
                    .subrange(offset, len)
                    .writer()
                    .write(&mem.as_bytes()[offset..][..len])?;
            }
        }
        Ok(())
    }

    async fn write_vectored(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
        fua: bool,
    ) -> Result<(), DiskError> {
        for layer in &self.layers {
            layer.backing.write(buffers, sector, fua, false).await?;
            if !layer.write_through {
                break;
            }
        }
        Ok(())
    }

    async fn sync_cache(&self) -> Result<(), DiskError> {
        for layer in &self.layers {
            layer.backing.sync_cache().await?;
            if !layer.write_through {
                break;
            }
        }
        Ok(())
    }

    fn wait_resize(&self, sector_count: u64) -> impl Future<Output = u64> + Send {
        self.layers[0].backing.wait_resize(sector_count)
    }

    async fn unmap(
        &self,
        sector_offset: u64,
        sector_count: u64,
        block_level_only: bool,
    ) -> Result<(), DiskError> {
        if self.unmap_behavior == UnmapBehavior::Ignored {
            return Ok(());
        }

        for (layer, next_layer) in self
            .layers
            .iter()
            .zip(self.layers.iter().map(Some).skip(1).chain([None]))
        {
            let next_is_zero = if let Some(next_layer) = next_layer {
                // Sectors beyond the layer's visible sector count are logically
                // zero.
                //
                // FUTURE: consider splitting the unmap operation into multiple
                // operations across this boundary.
                sector_offset >= next_layer.visible_sector_count
            } else {
                true
            };

            layer
                .backing
                .unmap(sector_offset, sector_count, block_level_only, next_is_zero)
                .await?;
            if !layer.write_through {
                break;
            }
        }
        Ok(())
    }

    fn unmap_behavior(&self) -> UnmapBehavior {
        self.unmap_behavior
    }

    fn optimal_unmap_sectors(&self) -> u32 {
        self.optimal_unmap_sectors
    }
}

/// A disk layer wrapping a full disk.
#[derive(Inspect)]
#[inspect(transparent)]
struct DiskAsLayer(Disk);

impl LayerIo for DiskAsLayer {
    fn layer_type(&self) -> &str {
        "disk"
    }

    fn sector_count(&self) -> u64 {
        self.0.sector_count()
    }

    fn sector_size(&self) -> u32 {
        self.0.sector_size()
    }

    fn disk_id(&self) -> Option<[u8; 16]> {
        self.0.disk_id()
    }

    fn physical_sector_size(&self) -> u32 {
        self.0.physical_sector_size()
    }

    fn is_fua_respected(&self) -> bool {
        self.0.is_fua_respected()
    }

    fn is_logically_read_only(&self) -> bool {
        self.0.is_read_only()
    }

    fn sync_cache(&self) -> impl Future<Output = Result<(), DiskError>> + Send {
        self.0.sync_cache()
    }

    async fn read(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
        mut bitmap: SectorMarker<'_>,
    ) -> Result<(), DiskError> {
        // The disk is fully populated.
        bitmap.set_all();
        self.0.read_vectored(buffers, sector).await
    }

    async fn write(
        &self,
        buffers: &RequestBuffers<'_>,
        sector: u64,
        fua: bool,
    ) -> Result<(), DiskError> {
        self.0.write_vectored(buffers, sector, fua).await
    }

    fn unmap(
        &self,
        sector: u64,
        count: u64,
        block_level_only: bool,
        _lower_is_zero: bool,
    ) -> impl Future<Output = Result<(), DiskError>> + Send {
        self.0.unmap(sector, count, block_level_only)
    }

    fn unmap_behavior(&self) -> UnmapBehavior {
        self.0.unmap_behavior()
    }
}

#[cfg(test)]
mod tests {
    use crate::DiskLayer;
    use crate::LayerConfiguration;
    use crate::LayerIo;
    use crate::LayeredDisk;
    use crate::SectorMarker;
    use crate::WriteNoOverwrite;
    use disk_backend::DiskIo;
    use disk_backend::UnmapBehavior;
    use guestmem::GuestMemory;
    use guestmem::MemoryRead as _;
    use guestmem::MemoryWrite;
    use inspect::Inspect;
    use pal_async::async_test;
    use parking_lot::Mutex;
    use scsi_buffers::OwnedRequestBuffers;
    use std::collections::BTreeMap;
    use std::collections::btree_map::Entry;
    use std::sync::Arc;

    #[derive(Inspect)]
    #[inspect(skip)]
    struct TestLayer {
        sectors: Mutex<BTreeMap<u64, Data>>,
        sector_count: u64,
    }

    impl TestLayer {
        fn new(sector_count: u64) -> Self {
            Self {
                sectors: Mutex::new(BTreeMap::new()),
                sector_count,
            }
        }
    }

    struct Data(Box<[u8]>);

    impl LayerIo for Arc<TestLayer> {
        fn layer_type(&self) -> &str {
            "test"
        }

        fn sector_count(&self) -> u64 {
            self.sector_count
        }

        fn sector_size(&self) -> u32 {
            512
        }

        fn disk_id(&self) -> Option<[u8; 16]> {
            None
        }

        fn physical_sector_size(&self) -> u32 {
            512
        }

        fn is_fua_respected(&self) -> bool {
            false
        }

        fn is_logically_read_only(&self) -> bool {
            false
        }

        async fn sync_cache(&self) -> Result<(), disk_backend::DiskError> {
            Ok(())
        }

        async fn read(
            &self,
            buffers: &scsi_buffers::RequestBuffers<'_>,
            sector: u64,
            mut marker: SectorMarker<'_>,
        ) -> Result<(), disk_backend::DiskError> {
            let sector_count = buffers.len() / self.sector_size() as usize;
            let sectors = self.sectors.lock();
            for i in sector..sector + sector_count as u64 {
                let Some(data) = sectors.get(&i) else {
                    continue;
                };
                let offset = ((i - sector) * self.sector_size() as u64) as usize;
                buffers
                    .subrange(offset, self.sector_size() as usize)
                    .writer()
                    .write(&data.0)?;
                marker.set(i);
            }
            Ok(())
        }

        async fn write(
            &self,
            buffers: &scsi_buffers::RequestBuffers<'_>,
            sector: u64,
            _fua: bool,
        ) -> Result<(), disk_backend::DiskError> {
            let sector_count = buffers.len() / self.sector_size() as usize;
            let mut sectors = self.sectors.lock();
            for i in sector..sector + sector_count as u64 {
                let offset = ((i - sector) * self.sector_size() as u64) as usize;
                let mut data = Data(vec![0; self.sector_size() as usize].into());
                buffers
                    .subrange(offset, self.sector_size() as usize)
                    .reader()
                    .read(&mut data.0)?;
                sectors.insert(i, data);
            }
            Ok(())
        }

        async fn unmap(
            &self,
            sector: u64,
            count: u64,
            _block_level_only: bool,
            next_is_zero: bool,
        ) -> Result<(), disk_backend::DiskError> {
            if !next_is_zero {
                return Ok(());
            }
            let mut sectors = self.sectors.lock();
            let mut next_sector = sector;
            let end = sector + count;
            while next_sector < end {
                let Some((&sector, _)) = sectors.range_mut(next_sector..).next() else {
                    break;
                };
                if sector >= end {
                    break;
                }
                sectors.remove(&sector);
                next_sector = sector + 1;
            }
            Ok(())
        }

        fn unmap_behavior(&self) -> UnmapBehavior {
            UnmapBehavior::Unspecified
        }

        fn write_no_overwrite(&self) -> Option<impl WriteNoOverwrite> {
            Some(self)
        }
    }

    impl WriteNoOverwrite for Arc<TestLayer> {
        async fn write_no_overwrite(
            &self,
            buffers: &scsi_buffers::RequestBuffers<'_>,
            sector: u64,
        ) -> Result<(), disk_backend::DiskError> {
            let sector_count = buffers.len() / self.sector_size() as usize;
            let mut sectors = self.sectors.lock();
            for i in sector..sector + sector_count as u64 {
                let Entry::Vacant(entry) = sectors.entry(i) else {
                    continue;
                };
                let offset = ((i - sector) * self.sector_size() as u64) as usize;
                let mut data = Data(vec![0; self.sector_size() as usize].into());
                buffers
                    .subrange(offset, self.sector_size() as usize)
                    .reader()
                    .read(&mut data.0)?;
                entry.insert(data);
            }
            Ok(())
        }
    }

    #[async_test]
    async fn test_read_cache() {
        const SIZE: u64 = 2048;
        let bottom = Arc::new(TestLayer::new(SIZE));
        let pattern = |i: u64| {
            let mut acc = (i + 1) * 3;
            Data(
                (0..512)
                    .map(|_| {
                        acc = acc.wrapping_mul(7);
                        acc as u8
                    })
                    .collect::<Vec<_>>()
                    .into(),
            )
        };
        bottom
            .sectors
            .lock()
            .extend((0..SIZE).map(|i| (i, pattern(i))));

        let cache = Arc::new(TestLayer::new(SIZE));
        let cache_cfg = LayerConfiguration {
            layer: DiskLayer::new(cache.clone()),
            read_cache: true,
            write_through: false,
        };
        let bottom_cfg = LayerConfiguration {
            layer: DiskLayer::new(bottom),
            read_cache: false,
            write_through: false,
        };
        let disk = LayeredDisk::new(false, vec![cache_cfg, bottom_cfg])
            .await
            .unwrap();

        let mut mem = GuestMemory::allocate(0x10000);
        let buffers = OwnedRequestBuffers::linear(0, 0x10000, true);

        for i in [0, 2, 4, 6, 8, 0, 2, 4, 6, 8] {
            disk.read_vectored(&buffers.buffer(&mem).subrange(0, 512), i)
                .await
                .unwrap();

            assert_eq!(mem.inner_buf_mut().unwrap()[..512], pattern(i).0[..]);
        }

        assert_eq!(cache.sectors.lock().len(), 5);

        mem.inner_buf_mut().unwrap().fill(0);

        disk.read_vectored(&buffers.buffer(&mem).subrange(0, 15 * 512), 1)
            .await
            .unwrap();

        assert_eq!(cache.sectors.lock().len(), 16);

        for i in 0..15 {
            assert_eq!(
                mem.inner_buf_mut().unwrap()[i as usize * 512..][..512],
                pattern(i + 1).0[..],
                "{i}"
            );
        }
    }
}