debug_worker/gdb/arch/x86/reg/
core32.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

use super::F80;
use super::X86SegmentRegs;
use super::X87FpuInternalRegs;
use core::convert::TryInto;
use gdbstub::arch::Registers;

/// 32-bit x86 core registers (+ SSE extensions).
///
/// Source: <https://github.com/bminor/binutils-gdb/blob/master/gdb/features/i386/32bit-core.xml>
/// Additionally: <https://github.com/bminor/binutils-gdb/blob/master/gdb/features/i386/32bit-sse.xml>
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct X86CoreRegs {
    /// Accumulator
    pub eax: u32,
    /// Count register
    pub ecx: u32,
    /// Data register
    pub edx: u32,
    /// Base register
    pub ebx: u32,
    /// Stack pointer
    pub esp: u32,
    /// Base pointer
    pub ebp: u32,
    /// Source index
    pub esi: u32,
    /// Destination index
    pub edi: u32,
    /// Instruction pointer
    pub eip: u32,
    /// Status register
    pub eflags: u32,
    /// Segment registers: CS, SS, DS, ES, FS, GS
    pub segments: X86SegmentRegs,
    /// FPU registers: ST0 through ST7
    pub st: [F80; 8],
    /// FPU internal registers
    pub fpu: X87FpuInternalRegs,
    /// SIMD Registers: XMM0 through XMM7
    pub xmm: [u128; 8],
    /// SSE Status/Control Register
    pub mxcsr: u32,
}

impl Registers for X86CoreRegs {
    type ProgramCounter = u32;

    fn pc(&self) -> Self::ProgramCounter {
        self.eip
    }

    fn gdb_serialize(&self, mut write_byte: impl FnMut(Option<u8>)) {
        macro_rules! write_bytes {
            ($bytes:expr) => {
                for b in $bytes {
                    write_byte(Some(*b))
                }
            };
        }

        macro_rules! write_regs {
            ($($reg:ident),*) => {
                $(
                    write_bytes!(&self.$reg.to_le_bytes());
                )*
            }
        }

        write_regs!(eax, ecx, edx, ebx, esp, ebp, esi, edi, eip, eflags);

        self.segments.gdb_serialize(&mut write_byte);

        // st0 to st7
        for st_reg in &self.st {
            write_bytes!(st_reg);
        }

        self.fpu.gdb_serialize(&mut write_byte);

        // xmm0 to xmm15
        for xmm_reg in &self.xmm {
            write_bytes!(&xmm_reg.to_le_bytes());
        }

        // mxcsr
        write_bytes!(&self.mxcsr.to_le_bytes());
    }

    fn gdb_deserialize(&mut self, bytes: &[u8]) -> Result<(), ()> {
        if bytes.len() < 0x138 {
            return Err(());
        }

        macro_rules! parse_regs {
            ($($reg:ident),*) => {
                let mut regs = bytes[0..0x28]
                    .chunks_exact(4)
                    .map(|x| u32::from_le_bytes(x.try_into().unwrap()));
                $(
                    self.$reg = regs.next().ok_or(())?;
                )*
            }
        }

        parse_regs!(eax, ecx, edx, ebx, esp, ebp, esi, edi, eip, eflags);

        self.segments.gdb_deserialize(&bytes[0x28..0x40])?;

        let mut regs = bytes[0x40..0x90].chunks_exact(10).map(TryInto::try_into);

        for reg in self.st.iter_mut() {
            *reg = regs.next().ok_or(())?.map_err(|_| ())?;
        }

        self.fpu.gdb_deserialize(&bytes[0x90..0xb0])?;

        let mut regs = bytes[0xb0..0x130]
            .chunks_exact(0x10)
            .map(|x| u128::from_le_bytes(x.try_into().unwrap()));

        for reg in self.xmm.iter_mut() {
            *reg = regs.next().ok_or(())?;
        }

        self.mxcsr = u32::from_le_bytes(bytes[0x130..0x134].try_into().unwrap());

        Ok(())
    }
}