chipset_arc_mutex_device/
test_chipset.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! A simple chipset that only supports MMIO intercepts.

use crate::device::ArcMutexChipsetDeviceBuilder;
use crate::device::ArcMutexChipsetServicesFinalize;
use crate::services::ChipsetServices;
use crate::services::ChipsetServicesMeta;
use crate::services::MmioInterceptServices;
use crate::services::Unimplemented;
use chipset_device::ChipsetDevice;
use chipset_device::io::IoResult;
use chipset_device::mmio::ControlMmioIntercept;
use chipset_device::mmio::RegisterMmioIntercept;
use closeable_mutex::CloseableMutex;
use parking_lot::RwLock;
use range_map_vec::RangeMap;
use std::cell::Cell;
use std::sync::Arc;
use std::sync::Weak;

type MmioRanges = Arc<RwLock<RangeMap<u64, (Box<str>, Weak<CloseableMutex<dyn ChipsetDevice>>)>>>;

/// A concrete type which implements [`RegisterMmioIntercept`]
pub struct TestMmioRangeMapper {
    dev: Weak<CloseableMutex<dyn ChipsetDevice>>,
    map: MmioRanges,
}

// Implementation detail - the concrete type returned by TestMmioRangeMapper's
// `new_io_region` implementation
struct TestDeviceRange {
    map: MmioRanges,
    region_name: Box<str>,
    len: u64,
    addr: Option<u64>,
    io: Weak<CloseableMutex<dyn ChipsetDevice>>,
}

impl RegisterMmioIntercept for TestMmioRangeMapper {
    fn new_io_region(&mut self, region_name: &str, len: u64) -> Box<dyn ControlMmioIntercept> {
        Box::new(TestDeviceRange {
            map: self.map.clone(),
            region_name: region_name.into(),
            len,
            addr: None,
            io: self.dev.clone(),
        })
    }
}
impl ControlMmioIntercept for TestDeviceRange {
    fn region_name(&self) -> &str {
        &self.region_name
    }

    fn map(&mut self, addr: u64) {
        self.unmap();
        if self.map.write().insert(
            addr..=addr
                .checked_add(self.len - 1)
                .expect("overflow during addition, not possible in real hardware"),
            (self.region_name.clone(), self.io.clone()),
        ) {
            self.addr = Some(addr);
        } else {
            panic!("conflict!")
        }
    }

    fn unmap(&mut self) {
        if let Some(addr) = self.addr.take() {
            let _entry = self.map.write().remove(&addr).unwrap();
        }
    }

    fn addr(&self) -> Option<u64> {
        self.addr
    }

    fn len(&self) -> u64 {
        self.len
    }

    fn offset_of(&self, addr: u64) -> Option<u64> {
        let base = self.addr?;

        (base..(base + self.len))
            .contains(&addr)
            .then(|| addr - base)
    }
}

/// A simple chipset that only models MMIO intercepts.
#[derive(Default)]
pub struct TestChipset {
    mmio_ranges: MmioRanges,
}

impl TestChipset {
    /// Return a device builder associated with the chipset
    pub fn device_builder<T: ChipsetDevice>(
        &self,
        name: &'static str,
    ) -> ArcMutexChipsetDeviceBuilder<TestChipsetServicesImpl<'_>, T> {
        ArcMutexChipsetDeviceBuilder::new(name.into(), |dev, _name| TestChipsetServicesImpl {
            vm_chipset: self,
            dev,
            took_mmio: false.into(),
        })
    }

    /// Dispatch a MMIO read to the given address.
    pub fn mmio_read(&self, addr: u64, data: &mut [u8]) -> Option<()> {
        let dev = self.mmio_ranges.read().get(&addr)?.1.upgrade()?;
        // devices might want to map/unmap ranges as part of a MMIO access,
        // so don't hold the range lock for any longer than we need to
        match dev
            .lock()
            .supports_mmio()
            .expect("objects on the mmio bus support mmio")
            .mmio_read(addr, data)
        {
            IoResult::Ok => {}
            IoResult::Err(_) => {
                data.fill(!0);
            }
            IoResult::Defer(_) => unreachable!(),
        }
        Some(())
    }

    /// Dispatch a MMIO write to the given address.
    pub fn mmio_write(&self, addr: u64, data: &[u8]) -> Option<()> {
        let dev = self.mmio_ranges.read().get(&addr)?.1.upgrade()?;
        // devices might want to map/unmap ranges as part of a MMIO access,
        // so don't hold the range lock for any longer than we need to
        let _ = dev
            .lock()
            .supports_mmio()
            .expect("objects on the mmio bus support mmio")
            .mmio_write(addr, data);
        Some(())
    }
}

/// Implementation of [`ChipsetServices`] associated with [`TestChipset`]
pub struct TestChipsetServicesImpl<'a> {
    vm_chipset: &'a TestChipset,
    dev: Weak<CloseableMutex<dyn ChipsetDevice>>,
    took_mmio: Cell<bool>,
}

/// Compile-time type metadata used by [`TestChipsetServicesImpl`]'s
/// [`ChipsetServices`] impl
pub enum TestChipsetServicesMeta {}
impl ChipsetServicesMeta for TestChipsetServicesMeta {
    type RegisterMmioIntercept = TestMmioRangeMapper;
    type RegisterPortIoIntercept = Unimplemented;
}

impl ChipsetServices for TestChipsetServicesImpl<'_> {
    type M = TestChipsetServicesMeta;

    #[inline(always)]
    fn supports_mmio(&mut self) -> Option<&mut dyn MmioInterceptServices<M = Self::M>> {
        Some(self)
    }
}

impl<T> ArcMutexChipsetServicesFinalize<T> for TestChipsetServicesImpl<'_> {
    fn finalize(self, _dev: &Arc<CloseableMutex<T>>, _name: Arc<str>) {}
}

impl MmioInterceptServices for TestChipsetServicesImpl<'_> {
    /// Obtain an instance of [`RegisterMmioIntercept`]
    fn register_mmio(&self) -> TestMmioRangeMapper {
        self.took_mmio.set(true);
        TestMmioRangeMapper {
            dev: self.dev.clone(),
            map: self.vm_chipset.mmio_ranges.clone(),
        }
    }

    fn is_being_used(&self) -> bool {
        self.took_mmio.get()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    mod sample_dev {
        use super::*;
        use chipset_device::io::IoResult;
        use chipset_device::mmio::MmioIntercept;
        use std::ops::RangeInclusive;

        pub struct SampleDevice {
            pub mmio_control: Box<dyn ControlMmioIntercept>,
            pub mmio_read_log: Vec<u64>,
        }

        impl SampleDevice {
            pub fn new(
                register_mmio: &mut dyn RegisterMmioIntercept,
            ) -> Result<Self, std::convert::Infallible> {
                Ok(SampleDevice {
                    mmio_control: register_mmio.new_io_region("dynamic", 1),
                    mmio_read_log: Vec::new(),
                })
            }
        }

        impl ChipsetDevice for SampleDevice {
            fn supports_mmio(&mut self) -> Option<&mut dyn MmioIntercept> {
                Some(self)
            }
        }

        impl MmioIntercept for SampleDevice {
            fn mmio_read(&mut self, addr: u64, _: &mut [u8]) -> IoResult {
                self.mmio_read_log.push(addr);
                IoResult::Ok
            }

            fn mmio_write(&mut self, _: u64, _: &[u8]) -> IoResult {
                IoResult::Ok
            }

            fn get_static_regions(&mut self) -> &[(&str, RangeInclusive<u64>)] {
                &[("static", 10..=10)]
            }
        }
    }

    #[test]
    fn closure() -> Result<(), Box<dyn std::error::Error>> {
        let vm_chipset = TestChipset::default();

        let devices_builder = ArcMutexChipsetDeviceBuilder::new("sample".into(), |dev, _name| {
            TestChipsetServicesImpl {
                vm_chipset: &vm_chipset,
                dev,
                took_mmio: false.into(),
            }
        });

        let sample_dev: Arc<CloseableMutex<sample_dev::SampleDevice>> = devices_builder
            .try_add(|services| sample_dev::SampleDevice::new(&mut services.register_mmio()))?;

        // give it a go
        assert!(vm_chipset.mmio_read(10, &mut []).is_some());
        assert!(vm_chipset.mmio_read(11, &mut []).is_none());
        sample_dev.lock().mmio_control.map(11);
        assert!(vm_chipset.mmio_read(11, &mut []).is_some());
        sample_dev.lock().mmio_control.unmap();
        assert!(vm_chipset.mmio_read(11, &mut []).is_none());

        assert_eq!(sample_dev.lock().mmio_read_log, [10, 11]);

        Ok(())
    }
}