chipset/
pit.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

use bitfield_struct::bitfield;
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::pio::PortIoIntercept;
use chipset_device::poll_device::PollDevice;
use chipset_device::ChipsetDevice;
use inspect::Inspect;
use inspect::InspectMut;
use open_enum::open_enum;
use std::ops::RangeInclusive;
use std::task::Context;
use std::task::Poll;
use std::time::Duration;
use thiserror::Error;
use vmcore::device_state::ChangeDeviceState;
use vmcore::line_interrupt::LineInterrupt;
use vmcore::vmtime::VmTime;
use vmcore::vmtime::VmTimeAccess;

#[rustfmt::skip]
#[derive(Inspect)]
#[bitfield(u8)]
struct ControlWord {
    #[bits(1)] bcd: bool,
    #[inspect(with = "|x| Mode::from(*x)")]
    #[bits(3)] mode: u8,
    #[inspect(with = "|x| RwMode(*x)")]
    #[bits(2)] rw: u8,
    #[inspect(skip)] // Ignore `select` since it's not part of the persistent state.
    #[bits(2)] select: u8,
}

#[rustfmt::skip]
#[bitfield(u8)]
struct StatusWord {
    #[bits(1)] bcd: bool,
    #[bits(3)] mode: u8,
    #[bits(2)] rw: u8,
    #[bits(1)] null: bool,
    #[bits(1)] out: bool,
}

#[bitfield(u8)]
struct ReadBackCommand {
    reserved: bool,
    counter0: bool,
    counter1: bool,
    counter2: bool,
    status: bool,
    count: bool,
    #[bits(2)]
    one: u8,
}

const PIT_TIMER_RANGE_START: u16 = 0x40;
const PIT_TIMER_RANGE_END: u16 = 0x42;
const PIT_CONTROL_REGISTER: u16 = 0x43;
const PIT_PORT61_REGISTER: u16 = 0x61;

#[derive(Debug, Inspect)]
struct Timer {
    // Static configuration
    enabled_at_reset: bool,

    // Runtime glue
    interrupt: Option<LineInterrupt>,

    // Volatile state
    #[inspect(flatten)]
    state: TimerState,
}

#[derive(Copy, Clone, Debug, Inspect)]
struct TimerState {
    ce: u16,         // "counting element", i.e. the counter
    cr: u16,         // count register, the new value
    ol: Option<u16>, // the output latch
    sl: Option<u8>,  // the status latch
    state: CountState,
    control: ControlWord,
    out: bool,       // timer output
    gate: bool,      // timer input
    null: bool,      // cr has been set but not copied to ce yet
    read_high: bool, // read the high counter byte next
    cr_low: Option<u8>,
}

#[derive(Copy, Clone, Debug, Inspect, PartialEq, Eq)]
enum CountState {
    Inactive,
    WaitingForGate,
    Reloading,
    Active,
    Counting,
}

#[derive(Debug, Copy, Clone, Inspect, PartialEq, Eq)]
enum Mode {
    TerminalCount = 0,
    HardwareOneShot = 1,
    RateGenerator = 2,
    SquareWave = 3,
    SoftwareStrobe = 4,
    HardwareStrobe = 5,
}

impl From<u8> for Mode {
    fn from(v: u8) -> Self {
        match v {
            0 => Mode::TerminalCount,
            1 => Mode::HardwareOneShot,
            2 | 6 => Mode::RateGenerator,
            3 | 7 => Mode::SquareWave,
            4 => Mode::SoftwareStrobe,
            5 => Mode::HardwareStrobe,
            _ => unreachable!(),
        }
    }
}

impl Mode {
    /// Returns true for modes where counting stops when gate is low.
    fn gate_stops_count(&self) -> bool {
        match self {
            Mode::TerminalCount | Mode::RateGenerator | Mode::SquareWave | Mode::SoftwareStrobe => {
                true
            }
            Mode::HardwareOneShot | Mode::HardwareStrobe => false,
        }
    }
}

open_enum! {
    #[derive(Inspect)]
    #[inspect(debug)]
    enum RwMode: u8 {
        LOW = 1,
        HIGH = 2,
        LOW_HIGH = 3,
    }
}

const fn from_bcd(n: u16) -> u16 {
    (n & 0xf) + ((n & 0xf0) >> 4) * 10 + ((n & 0xf00) >> 8) * 100 + ((n & 0xf000) >> 12) * 1000
}

const fn to_bcd(n: u16) -> u16 {
    (n % 10) + (((n / 10) % 10) << 4) + (((n / 100) % 10) << 8) + (((n / 1000) % 10) << 12)
}

/// Subtracts `n` from `ce` with wrap.
///
/// If `bcd`, then `ce` is in BCD format. The return value is always in binary
/// format.
fn counter_sub(ce: u16, n: u64, bcd: bool) -> u64 {
    if bcd {
        let ce = from_bcd(ce);
        let n = (n % 10000) as u16;
        (if ce >= n { ce - n } else { 10000 - (n - ce) }) as u64
    } else {
        ce.wrapping_sub(n as u16) as u64
    }
}

/// Nanoseconds per PIT tick.
const NANOS_PER_TICK: u64 = 838;

impl Timer {
    fn new(enabled_at_reset: bool, interrupt: Option<LineInterrupt>) -> Self {
        Self {
            enabled_at_reset,
            interrupt,
            state: TimerState::new(enabled_at_reset),
        }
    }

    fn reset(&mut self) {
        self.state = TimerState::new(self.enabled_at_reset);
        self.sync_interrupt();
    }

    fn sync_interrupt(&mut self) {
        if let Some(interrupt) = &self.interrupt {
            interrupt.set_level(self.state.out);
        }
    }

    fn set_out(&mut self, state: bool) {
        if self.state.out != state {
            self.state.out = state;
            self.sync_interrupt();
        }
    }

    fn load_ce(&mut self) {
        self.state.ce = self.state.cr;
        self.state.null = false;
    }

    /// Sets CE to the given value, wrapped. Stores CE in BCD
    /// format if the PIT is in BCD mode.
    fn set_ce(&mut self, ce: u64) {
        if self.state.control.bcd() {
            self.state.ce = to_bcd((ce % 10000) as u16);
        } else {
            self.state.ce = ce as u16;
        }
    }

    fn evaluate(&mut self, mut ticks: u64) {
        let mode = self.state.op_mode();
        let bcd = self.state.control.bcd();
        while ticks > 0 {
            match self.state.state {
                CountState::Inactive | CountState::WaitingForGate => break,
                CountState::Reloading => {
                    ticks -= 1;
                    self.load_ce();
                    self.state.state = CountState::Active;
                }
                CountState::Active => {
                    if !self.state.gate && mode.gate_stops_count() {
                        break;
                    }
                    // Counts per tick.
                    let per = match mode {
                        Mode::TerminalCount
                        | Mode::HardwareOneShot
                        | Mode::RateGenerator
                        | Mode::SoftwareStrobe
                        | Mode::HardwareStrobe => 1,
                        Mode::SquareWave => {
                            // Strip the low bit. This takes an extra tick when
                            // out is high.
                            if self.state.ce & 1 != 0 {
                                self.state.ce &= !1;
                                if self.state.out {
                                    ticks -= 1;
                                    continue;
                                }
                            }
                            2
                        }
                    };
                    if self.state.ce as u64 == per {
                        // Terminal state.
                        self.state.ce = 0;
                        ticks -= 1;
                        match mode {
                            Mode::TerminalCount | Mode::HardwareOneShot => {
                                self.set_out(true);
                                self.state.state = CountState::Counting;
                            }
                            Mode::RateGenerator => {
                                self.set_out(true);
                                self.load_ce();
                            }
                            Mode::SquareWave => {
                                self.set_out(!self.state.out);
                                self.load_ce();
                            }
                            Mode::SoftwareStrobe | Mode::HardwareStrobe => {
                                self.set_out(false);
                                self.state.state = CountState::Counting;
                            }
                        }
                    } else {
                        if ticks >= counter_sub(self.state.ce, per, bcd) / per {
                            // Decrement down to one tick before the terminal state.
                            ticks -= counter_sub(self.state.ce, per, bcd) / per;
                            self.state.ce = per as u16;
                            if mode == Mode::RateGenerator {
                                self.set_out(false);
                            }
                        } else {
                            self.set_ce(counter_sub(self.state.ce, ticks * per, bcd));
                            ticks = 0;
                        }
                    }
                }
                CountState::Counting => {
                    if !self.state.gate && mode.gate_stops_count() {
                        break;
                    }
                    self.set_ce(counter_sub(self.state.ce, ticks, bcd));
                    ticks = 0;
                    self.set_out(true);
                }
            }
        }
    }

    fn set_control(&mut self, control: ControlWord) {
        if control.rw() == 0 {
            self.state.latch_counter();
            return;
        }

        self.state.control = control.with_select(0);
        self.state.ce = 0;
        self.state.cr = 0;
        self.state.cr_low = None;
        self.state.read_high = false;
        self.state.state = CountState::Inactive;
        self.state.null = true;
        self.set_out(match self.state.op_mode() {
            Mode::TerminalCount => false,
            Mode::HardwareOneShot => true,
            Mode::RateGenerator | Mode::SquareWave => true,
            Mode::SoftwareStrobe => true,
            Mode::HardwareStrobe => true,
        });
    }

    fn write(&mut self, n: u8) {
        let n = n as u16;
        match RwMode(self.state.control.rw()) {
            RwMode::LOW => self.state.cr = n,
            RwMode::HIGH => self.state.cr = n << 8,
            RwMode::LOW_HIGH => {
                if let Some(low) = self.state.cr_low {
                    self.state.cr = (n << 8) | (low as u16);
                } else {
                    self.state.cr_low = Some(n as u8);
                    // Wait for high to be set before taking any actions.
                    return;
                }
            }
            _ => unreachable!(),
        }
        self.state.null = true;
        match self.state.op_mode() {
            Mode::TerminalCount => {
                self.state.state = CountState::Reloading;
                self.set_out(false);
            }
            Mode::HardwareOneShot => {
                self.state.state = CountState::WaitingForGate;
            }
            Mode::RateGenerator | Mode::SquareWave => {
                if self.state.state != CountState::Active {
                    self.state.state = CountState::Reloading;
                }
            }
            Mode::SoftwareStrobe => {
                self.state.state = CountState::Reloading;
            }
            Mode::HardwareStrobe => {
                self.state.state = CountState::WaitingForGate;
            }
        }
    }

    fn read(&mut self) -> u8 {
        if let Some(sl) = self.state.sl.take() {
            return sl;
        }
        let value = self.state.ol.unwrap_or(self.state.ce);
        let value = match RwMode(self.state.control.rw()) {
            RwMode::LOW => value as u8,
            RwMode::HIGH => (value >> 8) as u8,
            RwMode::LOW_HIGH => {
                self.state.read_high = !self.state.read_high;
                if self.state.read_high {
                    value as u8
                } else {
                    (value >> 8) as u8
                }
            }
            _ => unreachable!(),
        };
        if !self.state.read_high {
            self.state.ol = None;
        }
        value
    }

    fn set_gate(&mut self, gate: bool) {
        match self.state.op_mode() {
            Mode::TerminalCount => {}
            Mode::HardwareOneShot => {
                if !self.state.gate && gate && self.state.state == CountState::WaitingForGate {
                    self.state.state = CountState::Reloading;
                    self.set_out(false);
                }
            }
            Mode::RateGenerator | Mode::SquareWave => {
                if gate && !self.state.gate {
                    if self.state.state == CountState::Active {
                        self.state.state = CountState::Reloading;
                    }
                } else if !gate {
                    self.set_out(true);
                }
            }
            Mode::SoftwareStrobe => {}
            Mode::HardwareStrobe => {
                if !self.state.gate && gate && self.state.state == CountState::WaitingForGate {
                    self.state.state = CountState::Reloading;
                }
            }
        }
        self.state.gate = gate;
    }
}

impl TimerState {
    fn new(enabled: bool) -> Self {
        Self {
            ce: 0,
            cr: 0,
            ol: None,
            sl: None,
            control: ControlWord::new().with_rw(1),
            state: CountState::Inactive,
            out: false,
            null: true,
            gate: enabled,
            read_high: false,
            cr_low: None,
        }
    }

    fn op_mode(&self) -> Mode {
        self.control.mode().into()
    }

    // Returns the number of ticks until the next interrupt will occur.
    fn next_wakeup(&self) -> Option<u64> {
        let mode = self.op_mode();
        let bcd = self.control.bcd();
        match self.state {
            CountState::Inactive => None,
            CountState::WaitingForGate => None,
            CountState::Reloading | CountState::Active => {
                if !self.gate && mode.gate_stops_count() {
                    return None;
                }
                // Add an extra count for the reload cycle.
                let (ce, extra) = if self.state == CountState::Reloading {
                    (self.cr, 1)
                } else {
                    (self.ce, 0)
                };
                let v = {
                    match mode {
                        Mode::TerminalCount
                        | Mode::HardwareOneShot
                        | Mode::SoftwareStrobe
                        | Mode::HardwareStrobe => {
                            // Changing output in ce ticks.
                            counter_sub(ce, 1, bcd) + 1
                        }
                        Mode::RateGenerator => {
                            if ce == 1 {
                                // Going high in 1 tick.
                                1
                            } else {
                                // Going low in ce - 1 ticks.
                                counter_sub(ce, 1, bcd)
                            }
                        }
                        Mode::SquareWave => {
                            // Inverts in ce / 2 ticks, rounding up if out is high.
                            (counter_sub(ce, 2, bcd) + 2) / 2 + (self.out && ce & 1 != 0) as u64
                        }
                    }
                };
                Some(v + extra)
            }
            CountState::Counting => {
                if self.out || (!self.gate && mode.gate_stops_count()) {
                    None
                } else {
                    Some(1)
                }
            }
        }
    }

    fn latch_status(&mut self) {
        if self.sl.is_none() {
            self.sl = Some(
                StatusWord(self.control.0)
                    .with_null(self.null)
                    .with_out(self.out)
                    .into(),
            );
        }
    }

    fn latch_counter(&mut self) {
        if self.ol.is_none() {
            self.ol = Some(self.ce);
        }
    }
}

#[derive(InspectMut)]
pub struct PitDevice {
    // Runtime glue
    vmtime: VmTimeAccess,

    // Sub-emulators
    #[inspect(iter_by_index)]
    timers: [Timer; { PIT_TIMER_RANGE_END - PIT_TIMER_RANGE_START + 1 } as usize],

    // Runtime book-keeping
    dram_refresh: bool, // just jitters back and forth

    // Volatile state
    last: VmTime,
}

impl PitDevice {
    pub fn new(interrupt: LineInterrupt, vmtime: VmTimeAccess) -> Self {
        PitDevice {
            // Timers 1 and 2 are enabled by default. Timer 1's output is hooked
            // up to the interrupt line.
            timers: [
                Timer::new(true, Some(interrupt)),
                Timer::new(true, None),
                Timer::new(false, None),
            ],
            last: vmtime.now(),
            vmtime,
            dram_refresh: false,
        }
    }

    fn evaluate(&mut self, now: VmTime) {
        // Accumulate an integer number of ticks.
        //
        // N.B. if self.last were set to now, then each call to evaluate
        // would leak a portion of a tick, causing timers to expire late.
        let delta = now.checked_sub(self.last).unwrap_or(Duration::ZERO);
        let ticks = delta.as_nanos() as u64 / NANOS_PER_TICK;
        self.last = self
            .last
            .wrapping_add(Duration::from_nanos(ticks * NANOS_PER_TICK));
        self.timers[0].evaluate(ticks);
        self.timers[1].evaluate(ticks);
        self.timers[2].evaluate(ticks);
    }

    fn arm_wakeup(&mut self) {
        // Request another tick if needed. This is only needed for timer 0 since
        // that's the only one wired up to an interrupt.
        if let Some(next) = self.timers[0].state.next_wakeup() {
            // Delay waking up if the next wakeup is too soon to avoid spinning.
            let next = next.max(20);
            self.vmtime.set_timeout_if_before(
                self.last
                    .wrapping_add(Duration::from_nanos(next * NANOS_PER_TICK)),
            );
        }
    }
}

impl ChangeDeviceState for PitDevice {
    fn start(&mut self) {}

    async fn stop(&mut self) {}

    async fn reset(&mut self) {
        for timer in &mut self.timers {
            timer.reset();
        }
        self.last = self.vmtime.now();
    }
}

impl ChipsetDevice for PitDevice {
    fn supports_poll_device(&mut self) -> Option<&mut dyn PollDevice> {
        Some(self)
    }

    fn supports_pio(&mut self) -> Option<&mut dyn PortIoIntercept> {
        Some(self)
    }
}

impl PollDevice for PitDevice {
    fn poll_device(&mut self, cx: &mut Context<'_>) {
        if let Poll::Ready(now) = self.vmtime.poll_timeout(cx) {
            self.evaluate(now);
            // Re-register the poll before arming the next wakeup rather than
            // after so that a very short wakeup will still allow this function
            // to return, hopefully avoiding livelock.
            assert!(self.vmtime.poll_timeout(cx).is_pending());
            self.arm_wakeup();
        }
    }
}

impl PortIoIntercept for PitDevice {
    fn io_read(&mut self, io_port: u16, data: &mut [u8]) -> IoResult {
        if data.len() != 1 {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        self.evaluate(self.vmtime.now());
        match io_port {
            PIT_TIMER_RANGE_START..=PIT_TIMER_RANGE_END => {
                let offset = io_port - PIT_TIMER_RANGE_START;
                data[0] = self.timers[offset as usize].read();
            }
            PIT_CONTROL_REGISTER => {
                tracelimit::warn_ratelimited!("reading from write-only command register!");
                data[0] = !0;
            }
            PIT_PORT61_REGISTER => {
                data[0] = ((self.timers[2].state.out as u8) << 5)
                    | ((self.dram_refresh as u8) << 4)
                    | self.timers[2].state.gate as u8;
                // Cycle the DRAM refresh bit every read. PCAT uses this to
                // validate that DRAM is working, but it's not practical or
                // useful to make the timing accurate.
                self.dram_refresh = !self.dram_refresh;
            }
            _ => return IoResult::Err(IoError::InvalidRegister),
        }

        self.arm_wakeup();
        IoResult::Ok
    }

    fn io_write(&mut self, io_port: u16, data: &[u8]) -> IoResult {
        let &[b] = data else {
            return IoResult::Err(IoError::InvalidAccessSize);
        };

        self.evaluate(self.vmtime.now());

        match io_port {
            PIT_TIMER_RANGE_START..=PIT_TIMER_RANGE_END => {
                let offset = io_port - PIT_TIMER_RANGE_START;
                self.timers[offset as usize].write(b);
            }
            PIT_CONTROL_REGISTER => {
                let control = ControlWord(b);
                match control.select() {
                    i @ 0..=2 => {
                        tracing::trace!(timer = i, ?control, "control write");
                        self.timers[i as usize].set_control(control);
                    }
                    3 => {
                        let command = ReadBackCommand(b);
                        tracing::trace!(?command, "read back");
                        for (i, select) in
                            [command.counter0(), command.counter1(), command.counter2()]
                                .into_iter()
                                .enumerate()
                        {
                            if select {
                                if command.status() {
                                    self.timers[i].state.latch_status();
                                }
                                if command.count() {
                                    self.timers[i].state.latch_counter();
                                }
                            }
                        }
                    }
                    _ => unreachable!(),
                }
            }
            PIT_PORT61_REGISTER => {
                self.timers[2].set_gate((b & 1) != 0);
            }
            _ => return IoResult::Err(IoError::InvalidRegister),
        }

        self.arm_wakeup();
        IoResult::Ok
    }

    fn get_static_regions(&mut self) -> &[(&str, RangeInclusive<u16>)] {
        &[
            ("main", PIT_TIMER_RANGE_START..=PIT_CONTROL_REGISTER),
            ("port61", PIT_PORT61_REGISTER..=PIT_PORT61_REGISTER),
        ]
    }
}

mod save_restore {
    use super::*;
    use vmcore::save_restore::RestoreError;
    use vmcore::save_restore::SaveError;
    use vmcore::save_restore::SaveRestore;

    mod state {
        use mesh::payload::Protobuf;
        use vmcore::save_restore::SavedStateRoot;
        use vmcore::vmtime::VmTime;

        #[derive(Protobuf)]
        #[mesh(package = "chipset.pit")]
        pub enum SavedCountState {
            #[mesh(1)]
            Inactive,
            #[mesh(2)]
            WaitingForGate,
            #[mesh(3)]
            Reloading,
            #[mesh(4)]
            Active,
            #[mesh(5)]
            Counting,
        }

        #[derive(Protobuf)]
        #[mesh(package = "chipset.pit")]
        pub struct SavedTimerState {
            #[mesh(1)]
            pub ce: u16,
            #[mesh(2)]
            pub cr: u16,
            #[mesh(3)]
            pub ol: Option<u16>,
            #[mesh(4)]
            pub sl: Option<u8>,
            #[mesh(5)]
            pub state: SavedCountState,
            #[mesh(6)]
            pub control: u8,
            #[mesh(7)]
            pub out: bool,
            #[mesh(8)]
            pub gate: bool,
            #[mesh(9)]
            pub null: bool,
            #[mesh(10)]
            pub read_high: bool,
            #[mesh(11)]
            pub cr_low: Option<u8>,
        }

        #[derive(Protobuf, SavedStateRoot)]
        #[mesh(package = "chipset.pit")]
        pub struct SavedState {
            #[mesh(1)]
            pub timers: [SavedTimerState; 3],
            #[mesh(2)]
            pub last: VmTime,
        }
    }

    #[derive(Debug, Error)]
    enum PitDeviceRestoreError {
        #[error("last tick time is after current time")]
        InvalidLastTick,
    }

    impl SaveRestore for PitDevice {
        type SavedState = state::SavedState;

        fn save(&mut self) -> Result<Self::SavedState, SaveError> {
            let Self {
                vmtime: _,
                timers,
                dram_refresh: _,
                last,
            } = self;

            Ok(state::SavedState {
                timers: [&timers[0].state, &timers[1].state, &timers[2].state].map(|timer| {
                    let &TimerState {
                        ce,
                        cr,
                        ol,
                        sl,
                        state,
                        control,
                        out,
                        gate,
                        null,
                        read_high,
                        cr_low,
                    } = timer;

                    state::SavedTimerState {
                        ce,
                        cr,
                        ol,
                        sl,
                        state: match state {
                            CountState::Inactive => state::SavedCountState::Inactive,
                            CountState::WaitingForGate => state::SavedCountState::WaitingForGate,
                            CountState::Reloading => state::SavedCountState::Reloading,
                            CountState::Active => state::SavedCountState::Active,
                            CountState::Counting => state::SavedCountState::Counting,
                        },
                        control: control.into(),
                        out,
                        gate,
                        null,
                        read_high,
                        cr_low,
                    }
                }),

                last: *last,
            })
        }

        fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
            let state::SavedState { timers, last } = state;

            for (timer, state) in self.timers.iter_mut().zip(timers) {
                let state::SavedTimerState {
                    ce,
                    cr,
                    ol,
                    sl,
                    state,
                    control,
                    out,
                    gate,
                    null,
                    read_high,
                    cr_low,
                } = state;

                timer.state = TimerState {
                    ce,
                    cr,
                    ol,
                    sl,
                    state: match state {
                        state::SavedCountState::Inactive => CountState::Inactive,
                        state::SavedCountState::WaitingForGate => CountState::WaitingForGate,
                        state::SavedCountState::Reloading => CountState::Reloading,
                        state::SavedCountState::Active => CountState::Active,
                        state::SavedCountState::Counting => CountState::Counting,
                    },
                    out,
                    control: ControlWord::from(control), // no unused bits
                    gate,
                    null,
                    read_high,
                    cr_low,
                };

                timer.sync_interrupt();
            }

            self.last = last;
            if last.is_after(self.vmtime.now()) {
                return Err(RestoreError::InvalidSavedState(
                    PitDeviceRestoreError::InvalidLastTick.into(),
                ));
            }

            Ok(())
        }
    }
}

#[cfg(test)]
mod tests {
    use super::to_bcd;
    use super::ControlWord;
    use super::Mode;
    use super::RwMode;
    use super::Timer;
    use crate::pit::from_bcd;

    #[test]
    fn test_bcd_comp() {
        for i in 0..=9999 {
            assert_eq!(from_bcd(to_bcd(i)), i, "{i} {}", to_bcd(i));
        }
    }

    fn set_timer(timer: &mut Timer, mode: Mode, mut cr: u16, bcd: bool) {
        timer.set_control(
            ControlWord::new()
                .with_mode(mode as u8)
                .with_rw(RwMode::LOW_HIGH.0)
                .with_bcd(bcd),
        );
        if bcd {
            cr = to_bcd(cr);
        }
        timer.write(cr as u8);
        timer.write((cr >> 8) as u8);
    }

    fn check_invert(timer: &mut Timer, initial_out: bool, expected_next: u64) {
        let mode = Mode::from(timer.state.control.mode());
        assert_eq!(timer.state.out, initial_out, "{mode:?}");
        let n = timer.state.next_wakeup().unwrap();
        assert_eq!(n, expected_next, "{mode:?}");
        for i in 0..n - 1 {
            timer.evaluate(1);
            assert_eq!(
                i + timer.state.next_wakeup().unwrap() + 1,
                n,
                "{mode:?}, {i}"
            );
            assert_eq!(timer.state.out, initial_out, "{mode:?}, {i}");
        }
        timer.evaluate(1);
        assert_eq!(timer.state.out, !initial_out, "{mode:?}, {n}");
    }

    fn check_done(timer: &mut Timer) {
        assert!(timer.state.next_wakeup().is_none());
        let out = timer.state.out;
        for _ in 0..65536 {
            timer.evaluate(1);
            assert_eq!(timer.state.out, out);
        }
    }

    fn test_output(bcd: bool) {
        let mut timer = Timer::new(true, None);
        let max = if bcd { 10000 } else { 0x10000 };

        set_timer(&mut timer, Mode::TerminalCount, 0, bcd);
        check_invert(&mut timer, false, max + 1);
        check_done(&mut timer);

        set_timer(&mut timer, Mode::HardwareOneShot, 0, bcd);
        check_done(&mut timer);
        timer.set_gate(false);
        timer.set_gate(true);
        check_invert(&mut timer, false, max + 1);
        check_done(&mut timer);

        set_timer(&mut timer, Mode::RateGenerator, 0, bcd);
        check_invert(&mut timer, true, max);
        check_invert(&mut timer, false, 1);
        check_invert(&mut timer, true, max - 1);

        set_timer(&mut timer, Mode::SquareWave, 0, bcd);
        check_invert(&mut timer, true, max / 2 + 1);
        check_invert(&mut timer, false, max / 2);
        check_invert(&mut timer, true, max / 2);

        set_timer(&mut timer, Mode::SquareWave, 1001, bcd);
        check_invert(&mut timer, true, 502);
        check_invert(&mut timer, false, 500);
        check_invert(&mut timer, true, 501);

        set_timer(&mut timer, Mode::SoftwareStrobe, 0, bcd);
        check_invert(&mut timer, true, max + 1);
        check_invert(&mut timer, false, 1);
        check_done(&mut timer);

        set_timer(&mut timer, Mode::HardwareStrobe, 0, bcd);
        check_done(&mut timer);
        timer.set_gate(false);
        timer.set_gate(true);
        check_invert(&mut timer, true, max + 1);
        check_invert(&mut timer, false, 1);
        check_done(&mut timer);
    }

    #[test]
    fn test_binary() {
        test_output(false);
    }

    #[test]
    fn test_bcd() {
        test_output(true);
    }
}