chipset/dma.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Implements dual 8237 ISA DMA controllers.
//!
//! Tested working with Floppy, but may require additional improvements to work
//! properly with other legacy hardware (e.g: Sound Blaster)
//!
//! Rather than having the DMA controller device be some big, complicated
//! behemoth that asynchronously resolves DMA requests itself (i.e: how the DMA
//! controller works in actual hardware), our virtual DMA controller takes a
//! simpler approach.
//!
//! This device is essentially just a big bundle-of-registers, which DMA capable
//! devices can query via the specialized
//! [`vmcore::isa_dma_channel::IsaDmaChannel`] trait in order to get the info
//! they need to fulfil DMA requests themselves.
#![warn(missing_docs)]
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::pio::PortIoIntercept;
use chipset_device::ChipsetDevice;
use inspect::Inspect;
use inspect::InspectMut;
use open_enum::open_enum;
use std::ops::RangeInclusive;
use vmcore::device_state::ChangeDeviceState;
use vmcore::isa_dma_channel::IsaDmaBuffer;
use vmcore::isa_dma_channel::IsaDmaDirection;
// Skip registering page port 0x80 so that the PCAT BIOS can handle
// it for debugging purposes.
const DMA_PAGE_REGISTER_PORT_RANGE: u16 = 0x80;
const PAGE_PORTS: RangeInclusive<u16> =
(DMA_PAGE_REGISTER_PORT_RANGE + 0x1)..=(DMA_PAGE_REGISTER_PORT_RANGE + 0xf);
const CONTROLLER0_PORTS: RangeInclusive<u16> = 0x00..=0x0f;
/// Only the even ports, e.g., 0xc0, 0xc2, ..., 0xde, due to the 16
/// bit channel size that the second DMA controller supports.
const CONTROLLER1_PORTS: RangeInclusive<u16> = 0xc0..=0xdf;
const CHANNELS_PER_CONTROLLER: usize = 4;
const PAGE_PORTS_FOR_CHANNEL: [usize; 8] = [0x7, 0x3, 0x1, 0x2, 0xF, 0xB, 0x9, 0xA];
open_enum! {
// Starts at offset 8 from the register bank.
enum ControlRegister: u16 {
STATUS = 0, // port 0x08 (controller 0), port 0xd0 (controller 1). Read-only
COMMAND = 0, // port 0x08 (controller 0), port 0xd0 (controller 1). Write-only
REQUEST = 1, // port 0x09 (controller 0), port 0xd2 (controller 1)
MASK = 2, // port 0x0a (controller 0), port 0xd4 (controller 1)
MODE = 3, // port 0x0b (controller 0), port 0xd6 (controller 1)
CLEAR_FLIP_FLOP = 4, // port 0x0c (controller 0), port 0xd8 (controller 1)
INTERMEDIATE = 5, // port 0x0d (controller 0), port 0xda (controller 1). Read-only
RESET = 5, // port 0x0d (controller 0), port 0xda (controller 1). Write-only
CLEAR_MASK = 6, // port 0x0e (controller 0), port 0xdc (controller 1)
WRITE_MASK = 7, // port 0x0f (controller 0), port 0xde (controller 1)
}
}
/// Dual 8237 DMA controllers.
#[derive(Debug, InspectMut)]
pub struct DmaController {
// Volatile state
state: DmaControllerState,
}
#[derive(Debug, Default, Clone, Inspect)]
struct DmaControllerState {
#[inspect(iter_by_index)]
page_registers: [u8; 16],
controller0: Controller,
controller1: Controller,
}
impl DmaController {
/// Returns a new controller.
pub fn new() -> Self {
Self {
state: DmaControllerState::default(),
}
}
fn get_controller(&mut self, channel_number: usize) -> Option<&mut Controller> {
if channel_number < CHANNELS_PER_CONTROLLER {
Some(&mut self.state.controller0)
} else if channel_number < CHANNELS_PER_CONTROLLER * 2 {
Some(&mut self.state.controller1)
} else {
None
}
}
/// Checks the value of the DMA channel's configured transfer size.
///
/// Corresponds to the `check_transfer_size` function in the `IsaDmaChannel`
/// trait.
pub fn check_transfer_size(&mut self, channel_number: usize) -> u16 {
let Some(controller) = self.get_controller(channel_number) else {
tracelimit::error_ratelimited!(?channel_number, "invalid channel number");
return 0;
};
controller.channels[channel_number % CHANNELS_PER_CONTROLLER].count
}
/// Requests an access to ISA DMA channel buffer.
///
/// Corresponds to the `request` function in the `IsaDmaChannel` trait.
pub fn request(
&mut self,
channel_number: usize,
direction: IsaDmaDirection,
) -> Option<IsaDmaBuffer> {
if channel_number >= CHANNELS_PER_CONTROLLER * 2 {
tracelimit::error_ratelimited!(?channel_number, "invalid channel number");
return None;
}
let page = self.state.page_registers[PAGE_PORTS_FOR_CHANNEL[channel_number]];
let controller = self.get_controller(channel_number).unwrap();
if controller.disabled {
tracelimit::warn_ratelimited!(?channel_number, "channel is disabled");
return None;
}
let channel_index = channel_number % CHANNELS_PER_CONTROLLER;
let channel = &controller.channels[channel_index];
if !channel.enabled {
tracing::warn!(
?channel_number,
?channel_index,
"channel currently disabled"
);
return None;
}
let transfer_type = match (channel.mode >> 2) & 0x3 {
0 => {
tracing::error!(?channel_number, "invalid request: mode is self-test");
return None;
}
1 => IsaDmaDirection::Write,
2 => IsaDmaDirection::Read,
_ => {
tracing::error!(?channel_number, "invalid request: mode is invalid");
return None;
}
};
if transfer_type != direction {
tracing::warn!(
?channel_number,
?channel_index,
"mismatch between programmed and requested transfer directions"
);
return None;
}
let address = channel.address as u64 | (page as u64) << 16;
// Report the channel as being active.
controller.status &= !(1 << channel_index);
let buffer = IsaDmaBuffer {
address,
size: channel.count as usize,
};
Some(buffer)
}
/// Signals to the DMA controller that the transfer is concluded.
///
/// Corresponds to the `complete` function in the `IsaDmaChannel` trait.
pub fn complete(&mut self, channel_number: usize) {
let Some(controller) = self.get_controller(channel_number) else {
tracing::error!(?channel_number, "invalid channel number");
return;
};
let channel_index = channel_number % CHANNELS_PER_CONTROLLER;
if (controller.status & (1 << channel_index)) != 0 {
tracing::warn!(?channel_number, "channel was not active");
}
// Report the channel as being inactive.
controller.status |= 1 << channel_index;
}
}
impl ChangeDeviceState for DmaController {
fn start(&mut self) {}
async fn stop(&mut self) {}
async fn reset(&mut self) {
self.state = Default::default();
}
}
impl ChipsetDevice for DmaController {
fn supports_pio(&mut self) -> Option<&mut dyn PortIoIntercept> {
Some(self)
}
}
impl PortIoIntercept for DmaController {
fn io_read(&mut self, io_port: u16, data: &mut [u8]) -> IoResult {
data.fill(0);
data[0] = if PAGE_PORTS.contains(&io_port) {
self.state.page_registers[io_port as usize & 0xf]
} else if CONTROLLER0_PORTS.contains(&io_port) {
match self.state.controller0.read(io_port) {
Ok(val) => val,
Err(e) => return IoResult::Err(e),
}
} else if CONTROLLER1_PORTS.contains(&io_port) {
// The secondary controller registers are 16 bits wide (but still have only 8 bytes of data).
match self.state.controller1.read((io_port / 2) & 0xf) {
Ok(val) => val,
Err(e) => return IoResult::Err(e),
}
} else {
return IoResult::Err(IoError::InvalidRegister);
};
IoResult::Ok
}
fn io_write(&mut self, io_port: u16, data: &[u8]) -> IoResult {
if PAGE_PORTS.contains(&io_port) {
self.state.page_registers[io_port as usize & 0xf] = data[0];
IoResult::Ok
} else if CONTROLLER0_PORTS.contains(&io_port) {
self.state.controller0.write(io_port, data[0])
} else if CONTROLLER1_PORTS.contains(&io_port) {
// The secondary controller registers are 16 bits wide (but still have only 8 bytes of data).
self.state.controller1.write((io_port / 2) & 0xf, data[0])
} else {
IoResult::Err(IoError::InvalidRegister)
}
}
fn get_static_regions(&mut self) -> &[(&str, RangeInclusive<u16>)] {
&[
("page", PAGE_PORTS),
("controller0", CONTROLLER0_PORTS),
("controller1", CONTROLLER1_PORTS),
]
}
}
/// A single DMA controller.
#[derive(Debug, Default, Clone, Inspect)]
struct Controller {
#[inspect(iter_by_index)]
channels: [Channel; CHANNELS_PER_CONTROLLER],
flip_flop_high: bool,
latched_address: u16,
latched_count: u16,
disabled: bool,
status: u8,
}
#[derive(Debug, Default, Clone, Inspect)]
struct Channel {
#[inspect(hex)]
address: u16,
#[inspect(hex)]
count: u16,
#[inspect(hex)]
mode: u8,
enabled: bool,
}
impl Controller {
fn read(&mut self, reg: u16) -> Result<u8, IoError> {
let res = if reg < 8 {
let channel = reg as usize / 2;
let data = if reg % 2 == 0 {
// Address port.
if !self.flip_flop_high {
self.latched_address = self.channels[channel].address;
}
self.latched_address
} else {
// Word count port.
if !self.flip_flop_high {
self.latched_count = self.channels[channel].count;
}
self.latched_count
};
// Extract the high or low byte depending on the flip-flop state.
self.flip_flop_high = !self.flip_flop_high;
if !self.flip_flop_high {
(data >> 8) as u8
} else {
data as u8
}
} else {
match ControlRegister(reg - 8) {
ControlRegister::STATUS => std::mem::take(&mut self.status),
ControlRegister::INTERMEDIATE => 0,
ControlRegister::WRITE_MASK => {
let mut data = 0xf0;
for (n, channel) in self.channels.iter().enumerate() {
if channel.enabled {
// should this be `!channel.enabled`?
data |= 1 << n;
}
}
data
}
_ => return Err(IoError::InvalidRegister),
}
};
Ok(res)
}
fn write(&mut self, reg: u16, data: u8) -> IoResult {
if reg < 8 {
let channel = reg as usize / 2;
let mem = if reg % 2 == 0 {
// Address port.
&mut self.channels[channel].address
} else {
&mut self.channels[channel].count
};
if self.flip_flop_high {
*mem = (*mem & 0xff) | (data as u16) << 8
} else {
*mem = (*mem & 0xff00) | data as u16
}
self.flip_flop_high = !self.flip_flop_high;
} else {
match ControlRegister(reg - 8) {
ControlRegister::COMMAND => {
self.disabled = data != 0;
}
ControlRegister::REQUEST => {
// Our emulation doesn't support software-initiated DMA
// transfers. Specify that the channel has reached its
// terminal count.
self.status |= 1 << (data & 3);
}
ControlRegister::MASK => {
self.channels[data as usize & 3].enabled = data & 4 == 0;
}
ControlRegister::MODE => self.channels[data as usize & 3].mode = data,
ControlRegister::RESET => {
*self = Default::default();
}
ControlRegister::CLEAR_MASK => {
for channel in &mut self.channels {
channel.enabled = true;
}
}
ControlRegister::WRITE_MASK => {
for (n, channel) in self.channels.iter_mut().enumerate() {
channel.enabled = data & (1 << n) == 0;
}
}
ControlRegister::CLEAR_FLIP_FLOP => self.flip_flop_high = false,
_ => return IoResult::Err(IoError::InvalidRegister),
}
}
IoResult::Ok
}
}
mod save_restore {
use super::*;
use vmcore::save_restore::RestoreError;
use vmcore::save_restore::SaveError;
use vmcore::save_restore::SaveRestore;
mod state {
use mesh::payload::Protobuf;
use vmcore::save_restore::SavedStateRoot;
#[derive(Protobuf, SavedStateRoot)]
#[mesh(package = "chipset.dma")]
pub struct SavedState {
#[mesh(1)]
pub page_registers: [u8; 16],
#[mesh(2)]
pub controller0: SavedController,
#[mesh(3)]
pub controller1: SavedController,
}
#[derive(Protobuf)]
#[mesh(package = "chipset.dma")]
pub struct SavedController {
#[mesh(1)]
pub channels: [SavedChannel; 4],
#[mesh(2)]
pub flip_flop_high: bool,
#[mesh(3)]
pub latched_address: u16,
#[mesh(4)]
pub latched_count: u16,
#[mesh(5)]
pub status: u8,
#[mesh(6)]
pub disabled: bool,
}
#[derive(Protobuf)]
#[mesh(package = "chipset.dma")]
pub struct SavedChannel {
#[mesh(1)]
pub address: u16,
#[mesh(2)]
pub count: u16,
#[mesh(3)]
pub mode: u8,
#[mesh(4)]
pub enabled: bool,
}
}
impl SaveRestore for DmaController {
type SavedState = state::SavedState;
fn save(&mut self) -> Result<Self::SavedState, SaveError> {
let DmaControllerState {
page_registers,
controller0,
controller1,
} = self.state.clone();
let [controller0, controller1] = [controller0, controller1].map(|con| {
let Controller {
channels,
flip_flop_high,
latched_address,
latched_count,
status,
disabled,
} = con;
state::SavedController {
channels: channels.map(|chan| {
let Channel {
address,
count,
mode,
enabled,
} = chan;
state::SavedChannel {
address,
count,
mode,
enabled,
}
}),
flip_flop_high,
latched_address,
latched_count,
status,
disabled,
}
});
let saved_state = state::SavedState {
page_registers,
controller0,
controller1,
};
Ok(saved_state)
}
fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
let state::SavedState {
page_registers,
controller0,
controller1,
} = state;
let [controller0, controller1] = [controller0, controller1].map(|con| {
let state::SavedController {
channels,
flip_flop_high,
latched_address,
latched_count,
status,
disabled,
} = con;
Controller {
channels: channels.map(|chan| {
let state::SavedChannel {
address,
count,
mode,
enabled,
} = chan;
Channel {
address,
count,
mode,
enabled,
}
}),
flip_flop_high,
latched_address,
latched_count,
status,
disabled,
}
});
self.state = DmaControllerState {
page_registers,
controller0,
controller1,
};
Ok(())
}
}
}