cache_topology/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Provides ways to describe a machine's cache topology and to query it from
//! the current running machine.

// UNSAFETY: needed to call Win32 functions to query cache topology
#![cfg_attr(windows, expect(unsafe_code))]

use thiserror::Error;

/// A machine's cache topology.
#[derive(Debug)]
pub struct CacheTopology {
    /// A list of caches.
    pub caches: Vec<Cache>,
}

/// A memory cache.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct Cache {
    /// The cache level, 1 being closest to the CPU.
    pub level: u8,
    /// The cache type.
    pub cache_type: CacheType,
    /// The CPUs that share this cache.
    pub cpus: Vec<u32>,
    /// The cache size in bytes.
    pub size: u32,
    /// The cache associativity. /// If `None`, this cache is fully associative.
    pub associativity: Option<u32>,
    /// The cache line size in bytes.
    pub line_size: u32,
}

/// A cache type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum CacheType {
    /// A data cache.
    Data,
    /// An instruction cache.
    Instruction,
    /// A unified cache.
    Unified,
}

/// An error returned by [`CacheTopology::from_host`].
#[derive(Debug, Error)]
pub enum HostTopologyError {
    /// An error occurred while retrieving the cache topology.
    #[error("os error retrieving cache topology")]
    Os(#[source] std::io::Error),
}

impl CacheTopology {
    /// Returns the cache topology of the current machine.
    pub fn from_host() -> Result<Self, HostTopologyError> {
        let mut caches = Self::host_caches().map_err(HostTopologyError::Os)?;
        caches.sort();
        caches.dedup();
        Ok(Self { caches })
    }
}

#[cfg(windows)]
mod windows {
    use super::CacheTopology;
    use crate::Cache;
    use crate::CacheType;
    use windows_sys::Win32::Foundation::ERROR_INSUFFICIENT_BUFFER;
    use windows_sys::Win32::System::SystemInformation;

    impl CacheTopology {
        pub(crate) fn host_caches() -> std::io::Result<Vec<Cache>> {
            let mut len = 0;
            // SAFETY: passing a zero-length buffer as allowed by this routine.
            let r = unsafe {
                SystemInformation::GetLogicalProcessorInformationEx(
                    SystemInformation::RelationCache,
                    std::ptr::null_mut(),
                    &mut len,
                )
            };
            assert_eq!(r, 0);
            let err = std::io::Error::last_os_error();
            if err.raw_os_error() != Some(ERROR_INSUFFICIENT_BUFFER as i32) {
                return Err(err);
            }
            let mut buf = vec![0u8; len as usize];
            // SAFETY: passing a buffer of the correct size as returned by the
            // previous call.
            let r = unsafe {
                SystemInformation::GetLogicalProcessorInformationEx(
                    SystemInformation::RelationCache,
                    buf.as_mut_ptr().cast(),
                    &mut len,
                )
            };
            if r == 0 {
                return Err(std::io::Error::last_os_error());
            }

            let mut caches = Vec::new();

            let mut buf = buf.as_slice();
            while !buf.is_empty() {
                // SAFETY: the remaining buffer is guaranteed to be large enough to hold
                // the structure.
                let info = unsafe {
                    &*buf
                        .as_ptr()
                        .cast::<SystemInformation::SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>()
                };

                assert_eq!(info.Relationship, SystemInformation::RelationCache);
                buf = &buf[info.Size as usize..];

                // SAFETY: this is a cache entry, as guaranteed by the previous
                // assertion.
                let cache = unsafe { &info.Anonymous.Cache };

                // SAFETY: the buffer is guaranteed by Win32 to be large enough
                // to hold the group masks.
                let groups = unsafe {
                    std::slice::from_raw_parts(
                        cache.Anonymous.GroupMasks.as_ptr(),
                        cache.GroupCount as usize,
                    )
                };

                let mut cpus = Vec::new();
                for group in groups {
                    for i in 0..usize::BITS {
                        if group.Mask & (1 << i) != 0 {
                            cpus.push(group.Group as u32 * usize::BITS + i);
                        }
                    }
                }

                caches.push(Cache {
                    cpus,
                    level: cache.Level,
                    cache_type: match cache.Type {
                        SystemInformation::CacheUnified => CacheType::Unified,
                        SystemInformation::CacheInstruction => CacheType::Instruction,
                        SystemInformation::CacheData => CacheType::Data,
                        _ => continue,
                    },
                    size: cache.CacheSize,
                    associativity: if cache.Associativity == !0 {
                        None
                    } else {
                        Some(cache.Associativity.into())
                    },
                    line_size: cache.LineSize.into(),
                });
            }

            Ok(caches)
        }
    }
}

#[cfg(target_os = "linux")]
mod linux {
    use super::Cache;
    use super::CacheTopology;

    impl CacheTopology {
        pub(crate) fn host_caches() -> std::io::Result<Vec<Cache>> {
            let mut caches = Vec::new();
            for cpu_entry in fs_err::read_dir("/sys/devices/system/cpu")? {
                let cpu_path = cpu_entry?.path();
                if cpu_path
                    .file_name()
                    .unwrap()
                    .to_str()
                    .unwrap()
                    .strip_prefix("cpu")
                    .and_then(|s| s.parse::<u32>().ok())
                    .is_none()
                {
                    continue;
                }
                for entry in fs_err::read_dir(cpu_path.join("cache"))? {
                    let entry = entry?;
                    let path = entry.path();
                    if !path
                        .file_name()
                        .unwrap()
                        .to_str()
                        .is_some_and(|s| s.starts_with("index"))
                    {
                        continue;
                    }

                    let associativity = fs_err::read_to_string(path.join("ways_of_associativity"))?
                        .trim_end()
                        .parse()
                        .unwrap();

                    let mut cpus = Vec::new();
                    for range in fs_err::read_to_string(path.join("shared_cpu_list"))?
                        .trim_end()
                        .split(',')
                    {
                        if let Some((start, end)) = range.split_once('-') {
                            cpus.extend(
                                start.parse::<u32>().unwrap()..=end.parse::<u32>().unwrap(),
                            );
                        } else {
                            cpus.push(range.parse().unwrap());
                        }
                    }

                    let line_size_result = fs_err::read_to_string(path.join("coherency_line_size"));
                    let line_size = match line_size_result {
                        Ok(s) => s.trim_end().parse::<u32>().unwrap(),
                        Err(e) => match e.kind() {
                            std::io::ErrorKind::NotFound => 64,
                            _ => return std::io::Result::Err(e),
                        },
                    };
                    caches.push(Cache {
                        cpus,
                        level: fs_err::read_to_string(path.join("level"))?
                            .trim_end()
                            .parse()
                            .unwrap(),
                        cache_type: match fs_err::read_to_string(path.join("type"))?.trim_end() {
                            "Data" => super::CacheType::Data,
                            "Instruction" => super::CacheType::Instruction,
                            "Unified" => super::CacheType::Unified,
                            _ => continue,
                        },
                        size: fs_err::read_to_string(path.join("size"))?
                            .strip_suffix("K\n")
                            .unwrap()
                            .parse::<u32>()
                            .unwrap()
                            * 1024,
                        associativity: if associativity == 0 {
                            None
                        } else {
                            Some(associativity)
                        },
                        line_size,
                    });
                }
            }
            Ok(caches)
        }
    }
}

#[cfg(target_os = "macos")]
mod macos {
    use super::Cache;
    use super::CacheTopology;

    impl CacheTopology {
        pub(crate) fn host_caches() -> std::io::Result<Vec<Cache>> {
            // TODO
            Ok(Vec::new())
        }
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn test_host_cache_topology() {
        let topology = super::CacheTopology::from_host().unwrap();
        assert!(!topology.caches.is_empty());
        println!("{topology:?}");
    }
}