cache_topology/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Provides ways to describe a machine's cache topology and to query it from
//! the current running machine.
// UNSAFETY: needed to call Win32 functions to query cache topology
#![cfg_attr(windows, expect(unsafe_code))]
use thiserror::Error;
/// A machine's cache topology.
#[derive(Debug)]
pub struct CacheTopology {
/// A list of caches.
pub caches: Vec<Cache>,
}
/// A memory cache.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct Cache {
/// The cache level, 1 being closest to the CPU.
pub level: u8,
/// The cache type.
pub cache_type: CacheType,
/// The CPUs that share this cache.
pub cpus: Vec<u32>,
/// The cache size in bytes.
pub size: u32,
/// The cache associativity. /// If `None`, this cache is fully associative.
pub associativity: Option<u32>,
/// The cache line size in bytes.
pub line_size: u32,
}
/// A cache type.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum CacheType {
/// A data cache.
Data,
/// An instruction cache.
Instruction,
/// A unified cache.
Unified,
}
/// An error returned by [`CacheTopology::from_host`].
#[derive(Debug, Error)]
pub enum HostTopologyError {
/// An error occurred while retrieving the cache topology.
#[error("os error retrieving cache topology")]
Os(#[source] std::io::Error),
}
impl CacheTopology {
/// Returns the cache topology of the current machine.
pub fn from_host() -> Result<Self, HostTopologyError> {
let mut caches = Self::host_caches().map_err(HostTopologyError::Os)?;
caches.sort();
caches.dedup();
Ok(Self { caches })
}
}
#[cfg(windows)]
mod windows {
use super::CacheTopology;
use crate::Cache;
use crate::CacheType;
use windows_sys::Win32::Foundation::ERROR_INSUFFICIENT_BUFFER;
use windows_sys::Win32::System::SystemInformation;
impl CacheTopology {
pub(crate) fn host_caches() -> std::io::Result<Vec<Cache>> {
let mut len = 0;
// SAFETY: passing a zero-length buffer as allowed by this routine.
let r = unsafe {
SystemInformation::GetLogicalProcessorInformationEx(
SystemInformation::RelationCache,
std::ptr::null_mut(),
&mut len,
)
};
assert_eq!(r, 0);
let err = std::io::Error::last_os_error();
if err.raw_os_error() != Some(ERROR_INSUFFICIENT_BUFFER as i32) {
return Err(err);
}
let mut buf = vec![0u8; len as usize];
// SAFETY: passing a buffer of the correct size as returned by the
// previous call.
let r = unsafe {
SystemInformation::GetLogicalProcessorInformationEx(
SystemInformation::RelationCache,
buf.as_mut_ptr().cast(),
&mut len,
)
};
if r == 0 {
return Err(std::io::Error::last_os_error());
}
let mut caches = Vec::new();
let mut buf = buf.as_slice();
while !buf.is_empty() {
// SAFETY: the remaining buffer is guaranteed to be large enough to hold
// the structure.
let info = unsafe {
&*buf
.as_ptr()
.cast::<SystemInformation::SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>()
};
assert_eq!(info.Relationship, SystemInformation::RelationCache);
buf = &buf[info.Size as usize..];
// SAFETY: this is a cache entry, as guaranteed by the previous
// assertion.
let cache = unsafe { &info.Anonymous.Cache };
// SAFETY: the buffer is guaranteed by Win32 to be large enough
// to hold the group masks.
let groups = unsafe {
std::slice::from_raw_parts(
cache.Anonymous.GroupMasks.as_ptr(),
cache.GroupCount as usize,
)
};
let mut cpus = Vec::new();
for group in groups {
for i in 0..usize::BITS {
if group.Mask & (1 << i) != 0 {
cpus.push(group.Group as u32 * usize::BITS + i);
}
}
}
caches.push(Cache {
cpus,
level: cache.Level,
cache_type: match cache.Type {
SystemInformation::CacheUnified => CacheType::Unified,
SystemInformation::CacheInstruction => CacheType::Instruction,
SystemInformation::CacheData => CacheType::Data,
_ => continue,
},
size: cache.CacheSize,
associativity: if cache.Associativity == !0 {
None
} else {
Some(cache.Associativity.into())
},
line_size: cache.LineSize.into(),
});
}
Ok(caches)
}
}
}
#[cfg(target_os = "linux")]
mod linux {
use super::Cache;
use super::CacheTopology;
impl CacheTopology {
pub(crate) fn host_caches() -> std::io::Result<Vec<Cache>> {
let mut caches = Vec::new();
for cpu_entry in fs_err::read_dir("/sys/devices/system/cpu")? {
let cpu_path = cpu_entry?.path();
if cpu_path
.file_name()
.unwrap()
.to_str()
.unwrap()
.strip_prefix("cpu")
.and_then(|s| s.parse::<u32>().ok())
.is_none()
{
continue;
}
for entry in fs_err::read_dir(cpu_path.join("cache"))? {
let entry = entry?;
let path = entry.path();
if !path
.file_name()
.unwrap()
.to_str()
.is_some_and(|s| s.starts_with("index"))
{
continue;
}
let associativity = fs_err::read_to_string(path.join("ways_of_associativity"))?
.trim_end()
.parse()
.unwrap();
let mut cpus = Vec::new();
for range in fs_err::read_to_string(path.join("shared_cpu_list"))?
.trim_end()
.split(',')
{
if let Some((start, end)) = range.split_once('-') {
cpus.extend(
start.parse::<u32>().unwrap()..=end.parse::<u32>().unwrap(),
);
} else {
cpus.push(range.parse().unwrap());
}
}
let line_size_result = fs_err::read_to_string(path.join("coherency_line_size"));
let line_size = match line_size_result {
Ok(s) => s.trim_end().parse::<u32>().unwrap(),
Err(e) => match e.kind() {
std::io::ErrorKind::NotFound => 64,
_ => return std::io::Result::Err(e),
},
};
caches.push(Cache {
cpus,
level: fs_err::read_to_string(path.join("level"))?
.trim_end()
.parse()
.unwrap(),
cache_type: match fs_err::read_to_string(path.join("type"))?.trim_end() {
"Data" => super::CacheType::Data,
"Instruction" => super::CacheType::Instruction,
"Unified" => super::CacheType::Unified,
_ => continue,
},
size: fs_err::read_to_string(path.join("size"))?
.strip_suffix("K\n")
.unwrap()
.parse::<u32>()
.unwrap()
* 1024,
associativity: if associativity == 0 {
None
} else {
Some(associativity)
},
line_size,
});
}
}
Ok(caches)
}
}
}
#[cfg(target_os = "macos")]
mod macos {
use super::Cache;
use super::CacheTopology;
impl CacheTopology {
pub(crate) fn host_caches() -> std::io::Result<Vec<Cache>> {
// TODO
Ok(Vec::new())
}
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_host_cache_topology() {
let topology = super::CacheTopology::from_host().unwrap();
assert!(!topology.caches.is_empty());
println!("{topology:?}");
}
}