block_crypto/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Cryptography primitives for disk encryption.

#[cfg(windows)]
use bcrypt as sys;
#[cfg(unix)]
use ossl as sys;
use thiserror::Error;

/// XTS-AES-256 encryption/decryption.
pub struct XtsAes256(sys::XtsAes256);

/// An error for cryptographic operations.
#[derive(Debug, Error)]
#[error(transparent)]
pub struct Error(sys::Error);

impl XtsAes256 {
    /// The required key length for the algorithm.
    ///
    /// Note that an XTS-AES-256 key contains two AES keys, each of which is 256 bits.
    pub const KEY_LEN: usize = 64;

    /// Creates a new XTS-AES-256 encryption/decryption context.
    pub fn new(key: &[u8; Self::KEY_LEN], data_unit_size: u32) -> Result<Self, Error> {
        sys::xts_aes_256(key, data_unit_size)
            .map(Self)
            .map_err(Error)
    }

    /// Returns a context for encrypting data.
    pub fn encrypt(&self) -> Result<XtsAes256Ctx<'_>, Error> {
        Ok(XtsAes256Ctx(self.0.ctx(true).map_err(Error)?))
    }

    /// Returns a context for decrypting data.
    pub fn decrypt(&self) -> Result<XtsAes256Ctx<'_>, Error> {
        Ok(XtsAes256Ctx(self.0.ctx(false).map_err(Error)?))
    }
}

/// Context for XTS-AES-256 encryption/decryption.
pub struct XtsAes256Ctx<'a>(sys::XtsAes256Ctx<'a>);

impl XtsAes256Ctx<'_> {
    /// Encrypts or decrypts `data` using the provided `tweak`.
    pub fn cipher(&mut self, tweak: u128, data: &mut [u8]) -> Result<(), Error> {
        self.0.cipher(&tweak.to_le_bytes(), data).map_err(Error)?;
        Ok(())
    }
}

#[cfg(unix)]
mod ossl {
    pub struct NonStreamingCipher {
        enc: openssl::cipher_ctx::CipherCtx,
        dec: openssl::cipher_ctx::CipherCtx,
    }

    pub struct NonStreamingCipherCtx<'a> {
        ctx: openssl::cipher_ctx::CipherCtx,
        enc: bool,
        _dummy: &'a (),
    }

    pub type Error = openssl::error::ErrorStack;

    pub type XtsAes256 = NonStreamingCipher;
    pub type XtsAes256Ctx<'a> = NonStreamingCipherCtx<'a>;

    pub fn xts_aes_256(key: &[u8], _data_unit_size: u32) -> Result<XtsAes256, Error> {
        let mut enc = openssl::cipher_ctx::CipherCtx::new()?;
        enc.encrypt_init(
            Some(openssl::cipher::Cipher::aes_256_xts()),
            Some(key),
            None,
        )?;
        let mut dec = openssl::cipher_ctx::CipherCtx::new()?;
        dec.decrypt_init(
            Some(openssl::cipher::Cipher::aes_256_xts()),
            Some(key),
            None,
        )?;
        Ok(NonStreamingCipher { enc, dec })
    }

    impl NonStreamingCipher {
        pub fn ctx(&self, enc: bool) -> Result<NonStreamingCipherCtx<'_>, Error> {
            let mut ctx = openssl::cipher_ctx::CipherCtx::new()?;
            ctx.copy(if enc { &self.enc } else { &self.dec })?;
            Ok(NonStreamingCipherCtx {
                ctx,
                enc,
                _dummy: &(),
            })
        }
    }

    impl NonStreamingCipherCtx<'_> {
        pub fn cipher(&mut self, iv: &[u8], data: &mut [u8]) -> Result<(), Error> {
            if self.enc {
                self.ctx.encrypt_init(None, None, Some(iv))?;
            } else {
                self.ctx.decrypt_init(None, None, Some(iv))?;
            }
            self.ctx.cipher_update_inplace(data, data.len())?;
            Ok(())
        }
    }
}

#[cfg(windows)]
mod bcrypt {
    // UNSAFETY: calling bcrypt APIs
    #![expect(unsafe_code)]

    use std::sync::OnceLock;
    use thiserror::Error;
    use windows::Win32::Foundation::NTSTATUS;
    use windows::Win32::Foundation::RtlNtStatusToDosError;
    use windows::Win32::Security::Cryptography::BCRYPT_ALG_HANDLE;
    use windows::Win32::Security::Cryptography::BCRYPT_HANDLE;
    use windows::Win32::Security::Cryptography::BCRYPT_KEY_HANDLE;
    use windows::Win32::Security::Cryptography::BCRYPT_OPEN_ALGORITHM_PROVIDER_FLAGS;

    #[derive(Debug, Error)]
    #[error("{op} failed")]
    pub struct Error {
        op: &'static str,
        #[source]
        err: std::io::Error,
    }

    pub struct XtsAes256(Key);

    pub struct XtsAes256Ctx<'a> {
        key: &'a Key,
        enc: bool,
    }

    impl XtsAes256 {
        pub fn ctx(&self, enc: bool) -> Result<XtsAes256Ctx<'_>, Error> {
            Ok(XtsAes256Ctx { key: &self.0, enc })
        }
    }

    impl XtsAes256Ctx<'_> {
        pub fn cipher(&self, tweak: &[u8; 16], data: &mut [u8]) -> Result<(), Error> {
            // BCrypt only supports 64-bit tweaks, internally padding out the high 8
            // bytes with zeroes. (Why?) This is fine for our purposes but it's a
            // bit annoying to shuffle things around.
            let mut iv = u64::try_from(u128::from_le_bytes(*tweak))
                .map_err(|_| Error {
                    op: "convert tweak",
                    err: std::io::ErrorKind::InvalidInput.into(),
                })?
                .to_le_bytes();

            if self.enc {
                self.key.encrypt(&mut iv, data)
            } else {
                self.key.decrypt(&mut iv, data)
            }
        }
    }

    static XTS_AES_256: OnceLock<AlgHandle> = OnceLock::new();

    struct AlgHandle(BCRYPT_ALG_HANDLE);

    // SAFETY: the handle can be sent across threads.
    unsafe impl Send for AlgHandle {}
    // SAFETY: the handle can be shared across threads.
    unsafe impl Sync for AlgHandle {}

    fn bcrypt_result(op: &'static str, status: NTSTATUS) -> Result<(), Error> {
        if status.is_ok() {
            Ok(())
        } else {
            // SAFETY: no preconditions for this call.
            let err = unsafe { RtlNtStatusToDosError(status) };
            Err(Error {
                op,
                err: std::io::Error::from_raw_os_error(err as i32),
            })
        }
    }

    struct Key(BCRYPT_KEY_HANDLE);

    // SAFETY: the handle can be sent across threads.
    unsafe impl Send for Key {}
    // SAFETY: the handle can be shared across threads.
    unsafe impl Sync for Key {}

    impl Drop for Key {
        fn drop(&mut self) {
            // SAFETY: handle is valid and not aliased.
            unsafe {
                bcrypt_result(
                    "destroy key",
                    windows::Win32::Security::Cryptography::BCryptDestroyKey(self.0),
                )
                .unwrap();
            }
        }
    }

    impl Key {
        fn encrypt(&self, iv: &mut [u8], data: &mut [u8]) -> Result<(), Error> {
            // TODO: fix windows crate to allow aliased input and output, as
            // allowed by the API.
            let input = data.to_vec();
            let mut n = 0;
            // SAFETY: key and buffers are valid for the duration of the call.
            let status = unsafe {
                windows::Win32::Security::Cryptography::BCryptEncrypt(
                    self.0,
                    Some(&input),
                    None,
                    Some(iv),
                    Some(data),
                    &mut n,
                    windows::Win32::Security::Cryptography::BCRYPT_FLAGS(0),
                )
            };
            bcrypt_result("encrypt", status)?;
            assert_eq!(n as usize, data.len());
            Ok(())
        }

        fn decrypt(&self, iv: &mut [u8], data: &mut [u8]) -> Result<(), Error> {
            // TODO: fix windows crate to allow aliased input and output, as
            // allowed by the API.
            let input = data.to_vec();
            let mut n = 0;
            // SAFETY: key and buffers are valid for the duration of the call.
            let status = unsafe {
                windows::Win32::Security::Cryptography::BCryptDecrypt(
                    self.0,
                    Some(&input),
                    None,
                    Some(iv),
                    Some(data),
                    &mut n,
                    windows::Win32::Security::Cryptography::BCRYPT_FLAGS(0),
                )
            };
            bcrypt_result("decrypt", status)?;
            assert_eq!(n as usize, data.len());
            Ok(())
        }
    }

    pub fn xts_aes_256(key: &[u8], data_unit_size: u32) -> Result<XtsAes256, Error> {
        let alg = if let Some(alg) = XTS_AES_256.get() {
            alg
        } else {
            let mut handle = BCRYPT_ALG_HANDLE::default();
            // SAFETY: no safety requirements.
            let status = unsafe {
                windows::Win32::Security::Cryptography::BCryptOpenAlgorithmProvider(
                    &mut handle,
                    windows::Win32::Security::Cryptography::BCRYPT_XTS_AES_ALGORITHM,
                    windows::Win32::Security::Cryptography::MS_PRIMITIVE_PROVIDER,
                    BCRYPT_OPEN_ALGORITHM_PROVIDER_FLAGS(0),
                )
            };
            bcrypt_result("open algorithm provider", status)?;
            if let Err(AlgHandle(handle)) = XTS_AES_256.set(AlgHandle(handle)) {
                // SAFETY: handle is valid and not aliased.
                unsafe {
                    bcrypt_result(
                        "close algorithm provider",
                        windows::Win32::Security::Cryptography::BCryptCloseAlgorithmProvider(
                            handle, 0,
                        ),
                    )
                    .unwrap();
                }
            }
            XTS_AES_256.get().unwrap()
        };
        let key = {
            let mut handle = BCRYPT_KEY_HANDLE::default();
            // SAFETY: the algorithm handle is valid.
            let status = unsafe {
                windows::Win32::Security::Cryptography::BCryptGenerateSymmetricKey(
                    alg.0,
                    &mut handle,
                    None,
                    key,
                    0,
                )
            };
            bcrypt_result("generate symmetric key", status)?;
            Key(handle)
        };

        // SAFETY: the key handle is valid.
        let status = unsafe {
            windows::Win32::Security::Cryptography::BCryptSetProperty(
                BCRYPT_HANDLE(key.0.0),
                windows::Win32::Security::Cryptography::BCRYPT_MESSAGE_BLOCK_LENGTH,
                &data_unit_size.to_ne_bytes(),
                0,
            )
        };
        bcrypt_result("set message block length", status)?;

        Ok(XtsAes256(key))
    }
}