aarch64emu/
emulator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implements an arm64 instruction emulator.

use crate::Cpu;
use crate::opcodes::Aarch64DecodeGroup;
use crate::opcodes::Aarch64DecodeLoadStoreGroup;
use crate::opcodes::LoadRegisterLiteral;
use crate::opcodes::LoadStoreAtomic;
use crate::opcodes::LoadStoreRegister;
use crate::opcodes::LoadStoreRegisterPair;
use crate::opcodes::decode_group;
use aarch64defs::EsrEl2;
use inspect::Inspect;
use thiserror::Error;

#[derive(Debug, Error)]
pub enum Error<E> {
    #[error("unknown instruction: {0:#x?}")]
    UnsupportedInstruction(u32),
    #[error("unsupported instruction group: {0:?} {1:#x?}")]
    UnsupportedInstructionGroup(Aarch64DecodeGroup, u32),
    #[error("unsupported load/store instruction: {0:?} {1:#x?}")]
    UnsupportedLoadStoreInstruction(Aarch64DecodeLoadStoreGroup, u32),
    #[error("unsupported instruction set (thumb)")]
    UnsupportedInstructionSet,
    #[error("memory access error - {1:?} @ {0:#x}")]
    MemoryAccess(u64, OperationKind, #[source] E),
}

#[derive(Debug, Default, Inspect)]
pub struct InterceptState {
    pub instruction_bytes: [u8; 4],
    pub instruction_byte_count: u8,
    pub gpa: Option<u64>,
    #[inspect(with = "|x| inspect::AsHex(u64::from(*x))")]
    pub syndrome: EsrEl2,
    pub interruption_pending: bool,
}

enum InternalError<E> {
    /// Report an error to the caller.
    Error(Box<Error<E>>),
}

impl<E> From<Error<E>> for InternalError<E> {
    fn from(err: Error<E>) -> Self {
        InternalError::Error(Box::new(err))
    }
}

impl<E> From<Box<Error<E>>> for InternalError<E> {
    fn from(err: Box<Error<E>>) -> Self {
        InternalError::Error(err)
    }
}

#[derive(Debug)]
pub(crate) struct EmulatorOperations<T: Cpu> {
    pub cpu: T,
}

impl<T: Cpu> EmulatorOperations<T> {
    /// Reads an instruction to execute from the given guest VA.
    pub async fn read_instruction(
        &mut self,
        gva: u64,
        data: &mut [u8],
    ) -> Result<(), Box<Error<T::Error>>> {
        self.cpu
            .read_instruction(gva, data)
            .await
            .map_err(|err| Error::MemoryAccess(gva, OperationKind::Read, err))?;
        Ok(())
    }

    /// Reads memory from the given guest VA.
    pub async fn read_memory(
        &mut self,
        gva: u64,
        data: &mut [u8],
    ) -> Result<(), Box<Error<T::Error>>> {
        self.cpu
            .read_memory(gva, data)
            .await
            .map_err(|err| Error::MemoryAccess(gva, OperationKind::Read, err))?;
        Ok(())
    }

    /// Reads memory from the given guest PA.
    pub async fn read_physical_memory(
        &mut self,
        gpa: u64,
        data: &mut [u8],
    ) -> Result<(), Box<Error<T::Error>>> {
        self.cpu
            .read_physical_memory(gpa, data)
            .await
            .map_err(|err| Error::MemoryAccess(gpa, OperationKind::Read, err))?;
        Ok(())
    }

    /// Writes memory to the given guest VA.
    pub async fn write_memory(
        &mut self,
        gva: u64,
        data: &[u8],
    ) -> Result<(), Box<Error<T::Error>>> {
        self.cpu
            .write_memory(gva, data)
            .await
            .map_err(|err| Error::MemoryAccess(gva, OperationKind::Write, err))?;
        Ok(())
    }

    /// Writes memory to the given guest PA.
    pub async fn write_physical_memory(
        &mut self,
        gpa: u64,
        data: &[u8],
    ) -> Result<(), Box<Error<T::Error>>> {
        self.cpu
            .write_physical_memory(gpa, data)
            .await
            .map_err(|err| Error::MemoryAccess(gpa, OperationKind::Write, err))?;
        Ok(())
    }

    /// Writes memory to the given guest VA if the current value matches.
    pub async fn compare_and_write_memory(
        &mut self,
        gva: u64,
        current: &[u8],
        new: &[u8],
    ) -> Result<bool, Box<Error<T::Error>>> {
        let mut success = false;
        self.cpu
            .compare_and_write_memory(gva, current, new, &mut success)
            .await
            .map_err(|err| Error::MemoryAccess(gva, OperationKind::Write, err))?;
        Ok(success)
    }
}

/// An instruction emulator.
#[derive(Debug)]
pub struct Emulator<'a, T: Cpu> {
    inner: EmulatorOperations<T>,
    intercept_state: &'a InterceptState,
}

#[derive(Debug, Clone, Copy, PartialEq)]
pub enum OperationKind {
    Read,
    Write,
    AddressComputation,
}

impl<'a, T: Cpu> Emulator<'a, T> {
    /// Creates new emulator with the given CPU and initial state.
    pub fn new(cpu: T, intercept_state: &'a InterceptState) -> Self {
        Emulator {
            inner: EmulatorOperations { cpu },
            intercept_state,
        }
    }

    fn advance_pc(&mut self, count: u64) {
        let new_pc = self.inner.cpu.pc().wrapping_add(count);
        self.inner.cpu.update_pc(new_pc);
    }

    async fn decode_with_syndrome(&mut self) -> Result<bool, InternalError<T::Error>> {
        let Some(gpa) = self.intercept_state.gpa else {
            return Ok(false);
        };
        let syndrome = self.intercept_state.syndrome;
        if !matches!(
            aarch64defs::ExceptionClass(syndrome.ec()),
            aarch64defs::ExceptionClass::DATA_ABORT | aarch64defs::ExceptionClass::DATA_ABORT_LOWER
        ) {
            return Ok(false);
        }
        let iss = aarch64defs::IssDataAbort::from(syndrome.iss());
        if !iss.isv() {
            return Ok(false);
        }
        let len = 1 << iss.sas();
        let sign_extend = iss.sse();

        // Per "AArch64 System Register Descriptions/D23.2 General system control registers"
        // the SRT field is defined as
        //
        // > The register number of the Wt/Xt/Rt operand of the faulting
        // > instruction.
        //
        // In the A64 ISA TRM, Wt/Xt/Rt is used to designate the register number where the SP
        // register is not used whereas the addition of `|SP` tells that the SP register might
        // be used. Hence, the SRT field uses `0b11111` to encode `xzr`.
        //
        // Writing to `xzr` has no arch-observable effects, reading returns the all-zero's bit
        // pattern.
        let reg_index = iss.srt();
        if iss.wnr() {
            let data = match reg_index {
                0..=30 => self.inner.cpu.x(reg_index),
                31 => 0_u64,
                _ => unreachable!(),
            }
            .to_ne_bytes();
            self.inner.write_physical_memory(gpa, &data[..len]).await?;
        } else if reg_index != 31 {
            let mut data = [0; 8];
            // tracing::info!(gpa, len = data.len(), "reading memory from syndrome decode");
            self.inner
                .read_physical_memory(gpa, &mut data[..len])
                .await?;
            let mut data = u64::from_ne_bytes(data);
            if sign_extend {
                let shift = 64 - len * 8;
                data = ((data as i64) << shift >> shift) as u64;
                if !iss.sf() {
                    data &= 0xffffffff;
                }
            }
            self.inner.cpu.update_x(reg_index, data);
        }
        self.advance_pc(if syndrome.il() { 4 } else { 2 });
        Ok(true)
    }

    pub async fn run(&mut self) -> Result<(), Box<Error<T::Error>>> {
        match self.decode_with_syndrome().await {
            Ok(false) => (),
            Ok(true) => return Ok(()),
            Err(InternalError::Error(err)) => {
                tracing::error!(%err, "Error decoding access via syndrome");
            }
        };

        // If the intercept message did not include the instruction bytes, fetch them now.
        let instruction = if self.intercept_state.instruction_byte_count > 0 {
            if self.intercept_state.instruction_byte_count != 4 {
                return Err(Box::new(Error::UnsupportedInstructionSet));
            }
            u32::from_ne_bytes(self.intercept_state.instruction_bytes)
        } else {
            let mut bytes = [0_u8; 4];
            let pc = self.inner.cpu.pc();
            self.inner.read_instruction(pc, &mut bytes[..]).await?;
            u32::from_ne_bytes(bytes)
        };
        let instruction_type = decode_group(instruction)?;
        match self.emulate(instruction, instruction_type).await {
            Ok(()) => {
                self.advance_pc(4);
                Ok(())
            }
            Err(InternalError::Error(err)) => Err(err),
        }
    }

    // DEVNOTE: The error type is boxed as a codesize optimization. See the comment on
    //          `run()` above for more information.
    /// Emulates the effects of an instruction.
    async fn emulate(
        &mut self,
        opcode: u32,
        instruction_type: Aarch64DecodeGroup,
    ) -> Result<(), InternalError<T::Error>> {
        // We should not be emulating instructions that don't touch MMIO or PIO, even though we are capable of doing so.
        // If we are asked to do so it is usually indicative of some other problem, so abort so we can track that down.
        let result = match instruction_type {
            Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::UnscaledImmediate)
            | Aarch64DecodeGroup::LoadStore(
                Aarch64DecodeLoadStoreGroup::RegisterUnscaledImmediate,
            )
            | Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::RegisterUnprivileged)
            | Aarch64DecodeGroup::LoadStore(
                Aarch64DecodeLoadStoreGroup::RegisterImmediatePostIndex,
            )
            | Aarch64DecodeGroup::LoadStore(
                Aarch64DecodeLoadStoreGroup::RegisterImmediatePreIndex,
            )
            | Aarch64DecodeGroup::LoadStore(
                Aarch64DecodeLoadStoreGroup::RegisterUnsignedImmediate,
            )
            | Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::RegisterOffset) => {
                LoadStoreRegister(opcode).emulate(&mut self.inner).await
            }
            Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::RegisterLiteral) => {
                LoadRegisterLiteral(opcode).emulate(&mut self.inner).await
            }
            Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::NoAllocatePair)
            | Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::RegisterPairPostIndex)
            | Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::RegisterPairOffset)
            | Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::RegisterPairPreIndex) => {
                LoadStoreRegisterPair(opcode).emulate(&mut self.inner).await
            }
            Aarch64DecodeGroup::LoadStore(Aarch64DecodeLoadStoreGroup::Atomic) => {
                LoadStoreAtomic(opcode).emulate(&mut self.inner).await
            }
            Aarch64DecodeGroup::LoadStore(typ) => {
                return Err(InternalError::Error(Box::new(
                    Error::UnsupportedLoadStoreInstruction(typ, opcode),
                )));
            }
            group => {
                return Err(InternalError::Error(Box::new(
                    Error::UnsupportedInstructionGroup(group, opcode),
                )));
            }
        };
        result.map_err(InternalError::Error)
    }
}