aarch64emu/
cpu.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

use std::future::Future;

pub trait Cpu: AccessCpuState {
    /// The error type for IO access failures.
    type Error;

    /// Performs a memory read of an instruction to execute.
    fn read_instruction(
        &mut self,
        gva: u64,
        bytes: &mut [u8],
    ) -> impl Future<Output = Result<(), Self::Error>>;

    /// Performs a memory read of 1, 2, 4, or 8 bytes.
    fn read_memory(
        &mut self,
        gva: u64,
        bytes: &mut [u8],
    ) -> impl Future<Output = Result<(), Self::Error>>;

    /// Performs a memory read of 1, 2, 4, or 8 bytes on a guest physical address.
    fn read_physical_memory(
        &mut self,
        gpa: u64,
        bytes: &mut [u8],
    ) -> impl Future<Output = Result<(), Self::Error>>;

    /// Performs a memory write of 1, 2, 4, or 8 bytes.
    fn write_memory(
        &mut self,
        gva: u64,
        bytes: &[u8],
    ) -> impl Future<Output = Result<(), Self::Error>>;

    /// Performs a memory write of 1, 2, 4, or 8 bytes on a guest physical address.
    fn write_physical_memory(
        &mut self,
        gpa: u64,
        bytes: &[u8],
    ) -> impl Future<Output = Result<(), Self::Error>>;

    /// Performs an atomic, sequentially-consistent compare exchange on a memory
    /// location.
    ///
    /// The caller has already fetched `current` via `read_memory`, so the
    /// implementor only needs to perform an atomic compare+write if the memory
    /// could have mutated concurrently and supports atomic operation. This
    /// includes ordinary RAM, but does not include device registers.
    ///
    /// Sets `*success` to `true` if the exchange succeeded, `false` otherwise.
    ///
    /// FUTURE: just return `success` when we can directly use async functions
    /// in traits.
    fn compare_and_write_memory(
        &mut self,
        gva: u64,
        current: &[u8],
        new: &[u8],
        success: &mut bool,
    ) -> impl Future<Output = Result<(), Self::Error>>;
}

impl<T: Cpu + ?Sized> Cpu for &mut T {
    type Error = T::Error;

    fn read_instruction(
        &mut self,
        gva: u64,
        bytes: &mut [u8],
    ) -> impl Future<Output = Result<(), Self::Error>> {
        (*self).read_memory(gva, bytes)
    }

    fn read_memory(
        &mut self,
        gva: u64,
        bytes: &mut [u8],
    ) -> impl Future<Output = Result<(), Self::Error>> {
        (*self).read_memory(gva, bytes)
    }

    fn read_physical_memory(
        &mut self,
        gpa: u64,
        bytes: &mut [u8],
    ) -> impl Future<Output = Result<(), Self::Error>> {
        (*self).read_physical_memory(gpa, bytes)
    }

    fn write_memory(
        &mut self,
        gva: u64,
        bytes: &[u8],
    ) -> impl Future<Output = Result<(), Self::Error>> {
        (*self).write_memory(gva, bytes)
    }

    fn write_physical_memory(
        &mut self,
        gpa: u64,
        bytes: &[u8],
    ) -> impl Future<Output = Result<(), Self::Error>> {
        (*self).write_physical_memory(gpa, bytes)
    }

    fn compare_and_write_memory(
        &mut self,
        gva: u64,
        current: &[u8],
        new: &[u8],
        success: &mut bool,
    ) -> impl Future<Output = Result<(), Self::Error>> {
        (*self).compare_and_write_memory(gva, current, new, success)
    }
}

pub trait AccessCpuState {
    /// Commit any outstanding register updates to the CPU.
    fn commit(&mut self);

    /// Access general purpose x register and index (e.g. X0).
    fn x(&mut self, index: u8) -> u64;

    /// Update general purpose x register at index with value (e.g. X0 = 1).
    fn update_x(&mut self, index: u8, data: u64);

    /// Access floating point 128-bit register at index (e.g. Q0).
    fn q(&self, index: u8) -> u128;

    /// Update floating point 128-bit register at index (e.g. Q0 = 1.0).
    fn update_q(&mut self, index: u8, data: u128);

    /// Access floating point 64-bit register at index (e.g. D0).
    fn d(&self, index: u8) -> u64;

    /// Update floating point 64-bit register at index (e.g. D0 = 1.0).
    fn update_d(&mut self, index: u8, data: u64);

    /// Access floating point 32-bit register at index (e.g. H0).
    fn h(&self, index: u8) -> u32;

    /// Update floating point 32-bit register at index (e.g. H0 = 1.0).
    fn update_h(&mut self, index: u8, data: u32);

    /// Access floating point 16-bit register at index (e.g. S0).
    fn s(&self, index: u8) -> u16;

    /// Update floating point 16-bit register at index (e.g. S0 = 1.0).
    fn update_s(&mut self, index: u8, data: u16);

    /// Access floating point 16-bit register at index (e.g. B0).
    fn b(&self, index: u8) -> u8;

    /// Update floating point 8-bit register at index (e.g. B0 = 1.0).
    fn update_b(&mut self, index: u8, data: u8);

    /// Access stack pointer register.
    fn sp(&mut self) -> u64;

    /// Update stack pointer register.
    fn update_sp(&mut self, data: u64);

    /// Access frame pointer register (alias for X29).
    fn fp(&mut self) -> u64;

    /// Update frame pointer register (alias for X29).
    fn update_fp(&mut self, data: u64);

    /// Access link register / return address (alias for X30).
    fn lr(&mut self) -> u64;

    /// Update link register / return address (alias for X30).
    fn update_lr(&mut self, data: u64);

    /// Access program counter register / instruction pointer.
    fn pc(&mut self) -> u64;

    /// Update program counter register / instruction pointer.
    fn update_pc(&mut self, data: u64);

    /// Access the CSPR register
    fn cpsr(&mut self) -> aarch64defs::Cpsr64;
}

impl<T: AccessCpuState + ?Sized> AccessCpuState for &mut T {
    fn commit(&mut self) {
        (*self).commit()
    }
    fn x(&mut self, index: u8) -> u64 {
        (*self).x(index)
    }
    fn update_x(&mut self, index: u8, data: u64) {
        (*self).update_x(index, data)
    }
    fn q(&self, index: u8) -> u128 {
        (**self).q(index)
    }
    fn update_q(&mut self, index: u8, data: u128) {
        (*self).update_q(index, data)
    }
    fn d(&self, index: u8) -> u64 {
        (**self).d(index)
    }
    fn update_d(&mut self, index: u8, data: u64) {
        (*self).update_d(index, data)
    }
    fn h(&self, index: u8) -> u32 {
        (**self).h(index)
    }
    fn update_h(&mut self, index: u8, data: u32) {
        (*self).update_h(index, data)
    }
    fn s(&self, index: u8) -> u16 {
        (**self).s(index)
    }
    fn update_s(&mut self, index: u8, data: u16) {
        (*self).update_s(index, data)
    }
    fn b(&self, index: u8) -> u8 {
        (**self).b(index)
    }
    fn update_b(&mut self, index: u8, data: u8) {
        (*self).update_b(index, data)
    }
    fn sp(&mut self) -> u64 {
        (*self).sp()
    }
    fn update_sp(&mut self, data: u64) {
        (*self).update_sp(data)
    }
    fn fp(&mut self) -> u64 {
        (*self).fp()
    }
    fn update_fp(&mut self, data: u64) {
        (*self).update_fp(data)
    }
    fn lr(&mut self) -> u64 {
        (*self).lr()
    }
    fn update_lr(&mut self, data: u64) {
        (*self).update_lr(data)
    }
    fn pc(&mut self) -> u64 {
        (*self).pc()
    }
    fn update_pc(&mut self, data: u64) {
        (*self).update_pc(data)
    }
    fn cpsr(&mut self) -> aarch64defs::Cpsr64 {
        (*self).cpsr()
    }
}