aarch64emu/cpu.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
use std::future::Future;
pub trait Cpu: AccessCpuState {
/// The error type for IO access failures.
type Error;
/// Performs a memory read of an instruction to execute.
fn read_instruction(
&mut self,
gva: u64,
bytes: &mut [u8],
) -> impl Future<Output = Result<(), Self::Error>>;
/// Performs a memory read of 1, 2, 4, or 8 bytes.
fn read_memory(
&mut self,
gva: u64,
bytes: &mut [u8],
) -> impl Future<Output = Result<(), Self::Error>>;
/// Performs a memory read of 1, 2, 4, or 8 bytes on a guest physical address.
fn read_physical_memory(
&mut self,
gpa: u64,
bytes: &mut [u8],
) -> impl Future<Output = Result<(), Self::Error>>;
/// Performs a memory write of 1, 2, 4, or 8 bytes.
fn write_memory(
&mut self,
gva: u64,
bytes: &[u8],
) -> impl Future<Output = Result<(), Self::Error>>;
/// Performs a memory write of 1, 2, 4, or 8 bytes on a guest physical address.
fn write_physical_memory(
&mut self,
gpa: u64,
bytes: &[u8],
) -> impl Future<Output = Result<(), Self::Error>>;
/// Performs an atomic, sequentially-consistent compare exchange on a memory
/// location.
///
/// The caller has already fetched `current` via `read_memory`, so the
/// implementor only needs to perform an atomic compare+write if the memory
/// could have mutated concurrently and supports atomic operation. This
/// includes ordinary RAM, but does not include device registers.
///
/// Sets `*success` to `true` if the exchange succeeded, `false` otherwise.
///
/// FUTURE: just return `success` when we can directly use async functions
/// in traits.
fn compare_and_write_memory(
&mut self,
gva: u64,
current: &[u8],
new: &[u8],
success: &mut bool,
) -> impl Future<Output = Result<(), Self::Error>>;
}
impl<T: Cpu + ?Sized> Cpu for &mut T {
type Error = T::Error;
fn read_instruction(
&mut self,
gva: u64,
bytes: &mut [u8],
) -> impl Future<Output = Result<(), Self::Error>> {
(*self).read_memory(gva, bytes)
}
fn read_memory(
&mut self,
gva: u64,
bytes: &mut [u8],
) -> impl Future<Output = Result<(), Self::Error>> {
(*self).read_memory(gva, bytes)
}
fn read_physical_memory(
&mut self,
gpa: u64,
bytes: &mut [u8],
) -> impl Future<Output = Result<(), Self::Error>> {
(*self).read_physical_memory(gpa, bytes)
}
fn write_memory(
&mut self,
gva: u64,
bytes: &[u8],
) -> impl Future<Output = Result<(), Self::Error>> {
(*self).write_memory(gva, bytes)
}
fn write_physical_memory(
&mut self,
gpa: u64,
bytes: &[u8],
) -> impl Future<Output = Result<(), Self::Error>> {
(*self).write_physical_memory(gpa, bytes)
}
fn compare_and_write_memory(
&mut self,
gva: u64,
current: &[u8],
new: &[u8],
success: &mut bool,
) -> impl Future<Output = Result<(), Self::Error>> {
(*self).compare_and_write_memory(gva, current, new, success)
}
}
pub trait AccessCpuState {
/// Commit any outstanding register updates to the CPU.
fn commit(&mut self);
/// Access general purpose x register and index (e.g. X0).
fn x(&mut self, index: u8) -> u64;
/// Update general purpose x register at index with value (e.g. X0 = 1).
fn update_x(&mut self, index: u8, data: u64);
/// Access floating point 128-bit register at index (e.g. Q0).
fn q(&self, index: u8) -> u128;
/// Update floating point 128-bit register at index (e.g. Q0 = 1.0).
fn update_q(&mut self, index: u8, data: u128);
/// Access floating point 64-bit register at index (e.g. D0).
fn d(&self, index: u8) -> u64;
/// Update floating point 64-bit register at index (e.g. D0 = 1.0).
fn update_d(&mut self, index: u8, data: u64);
/// Access floating point 32-bit register at index (e.g. H0).
fn h(&self, index: u8) -> u32;
/// Update floating point 32-bit register at index (e.g. H0 = 1.0).
fn update_h(&mut self, index: u8, data: u32);
/// Access floating point 16-bit register at index (e.g. S0).
fn s(&self, index: u8) -> u16;
/// Update floating point 16-bit register at index (e.g. S0 = 1.0).
fn update_s(&mut self, index: u8, data: u16);
/// Access floating point 16-bit register at index (e.g. B0).
fn b(&self, index: u8) -> u8;
/// Update floating point 8-bit register at index (e.g. B0 = 1.0).
fn update_b(&mut self, index: u8, data: u8);
/// Access stack pointer register.
fn sp(&mut self) -> u64;
/// Update stack pointer register.
fn update_sp(&mut self, data: u64);
/// Access frame pointer register (alias for X29).
fn fp(&mut self) -> u64;
/// Update frame pointer register (alias for X29).
fn update_fp(&mut self, data: u64);
/// Access link register / return address (alias for X30).
fn lr(&mut self) -> u64;
/// Update link register / return address (alias for X30).
fn update_lr(&mut self, data: u64);
/// Access program counter register / instruction pointer.
fn pc(&mut self) -> u64;
/// Update program counter register / instruction pointer.
fn update_pc(&mut self, data: u64);
/// Access the CSPR register
fn cpsr(&mut self) -> aarch64defs::Cpsr64;
}
impl<T: AccessCpuState + ?Sized> AccessCpuState for &mut T {
fn commit(&mut self) {
(*self).commit()
}
fn x(&mut self, index: u8) -> u64 {
(*self).x(index)
}
fn update_x(&mut self, index: u8, data: u64) {
(*self).update_x(index, data)
}
fn q(&self, index: u8) -> u128 {
(**self).q(index)
}
fn update_q(&mut self, index: u8, data: u128) {
(*self).update_q(index, data)
}
fn d(&self, index: u8) -> u64 {
(**self).d(index)
}
fn update_d(&mut self, index: u8, data: u64) {
(*self).update_d(index, data)
}
fn h(&self, index: u8) -> u32 {
(**self).h(index)
}
fn update_h(&mut self, index: u8, data: u32) {
(*self).update_h(index, data)
}
fn s(&self, index: u8) -> u16 {
(**self).s(index)
}
fn update_s(&mut self, index: u8, data: u16) {
(*self).update_s(index, data)
}
fn b(&self, index: u8) -> u8 {
(**self).b(index)
}
fn update_b(&mut self, index: u8, data: u8) {
(*self).update_b(index, data)
}
fn sp(&mut self) -> u64 {
(*self).sp()
}
fn update_sp(&mut self, data: u64) {
(*self).update_sp(data)
}
fn fp(&mut self) -> u64 {
(*self).fp()
}
fn update_fp(&mut self, data: u64) {
(*self).update_fp(data)
}
fn lr(&mut self) -> u64 {
(*self).lr()
}
fn update_lr(&mut self, data: u64) {
(*self).update_lr(data)
}
fn pc(&mut self) -> u64 {
(*self).pc()
}
fn update_pc(&mut self, data: u64) {
(*self).update_pc(data)
}
fn cpsr(&mut self) -> aarch64defs::Cpsr64 {
(*self).cpsr()
}
}